图卷积

原文:http://tkipf.github.io/graph-convolutional-networks/

多层图卷积网络 (GCN) with first-order filters.

GCNs Part I: Definitions

给定一个网络结构G=(V,E),

  1. N个节点,每个节点有D维信号或特征,即节点输入信号为N*D维矩阵, 记作X

  2. 图结构表示,邻接矩阵A

  3. 放入到图卷积网络中,得到输出Z,其中Z是N*F矩阵, F代表每个节点输出的特征维度

至于这个多层图卷积网络可以写成:

H(l+1)=f(H(l),A)

其中H(0)=X, H(L)=Z, 所以关键就是f(·,·)该怎么选取,以及内部参数的优化

原文地址:https://www.cnblogs.com/skykill/p/9286273.html

时间: 07-09

图卷积的相关文章

Convolution Network及其变种(反卷积、扩展卷积、因果卷积、图卷积)

今天,主要和大家分享一下最近研究的卷积网络和它的一些变种. 首先,介绍一下基础的卷积网络. 通过PPT上的这个经典的动态图片可以很好的理解卷积的过程.图中蓝色的大矩阵是我们的输入,黄色的小矩阵是卷积核(kernel,filter),旁边的小矩阵是卷积后的输入,通常称为feature map. 从动态图中,我们可以很明白的看出卷积实际上就是加权叠加. 同时,从这个动态图可以很明显的看出,输出的维度小于输入的维度.如果我们需要输出的维度和输入的维度相等,这就需要填充(padding). 现在我们来看

基于图卷积网络的图深度学习

基于图卷积网络的图深度学习 先简单回顾一下,深度学习到底干成功了哪些事情! 深度学习近些年在语音识别,图片识别,自然语音处理等领域可谓是屡建奇功.ImageNet:是一个计算机视觉系统识别项目, 是目前世界上图像识别最大的数据库,并且被业界熟知. 我们先回顾一下,没有大数据支撑的欧式深度学习技术.对于一个字母"Z"的识别,我们通常是建立一个2D网格(点阵),如果将其中的点连接起来,定义这样的连接方式所形成的就是"Z".然后是用其他字母来测试,这个模型的正确性. 传统

译:Local Spectral Graph Convolution for Point Set Feature Learning-用于点集特征学习的局部谱图卷积

标题:Local Spectral Graph Convolution for Point Set Feature Learning 作者:Chu Wang, Babak Samari, Kaleem Siddiqi 译者:Elliott Zheng 来源:ECCV 2018 Abstract 点云的特征学习已经显示出巨大的希望,引入了有效且可推广的深度学习框架,例如pointnet ++. 然而,到目前为止,点特征已经以独立和孤立的方式被抽象,忽略了相邻点的相对布局及其特征.在本文中,我们建议

【GCN】图卷积网络初探——基于图(Graph)的傅里叶变换和卷积

[GCN]图卷积网络初探——基于图(Graph)的傅里叶变换和卷积 2018年11月29日 11:50:38 夏至夏至520 阅读数 5980更多 分类专栏: # MachineLearning 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_41727666/article/details/84622965 本文为从CNN到GCN的联系与区别——GCN从入门到精(fang)通(qi

从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)

本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三) 在上一篇博客中,我们简单介绍了基于循环图神经网络的两种重要模型,在本篇中,我们将着大量笔墨介绍图卷积神经网络中的卷积操作.接下来,我们将首先介绍一下图卷积神经网络的大概框架

从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)

本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三) 笔者最近看了一些图与图卷积神经网络的论文,深感其强大,但一些Survey或教程默认了读者对图神经网络背景知识的了解,对未学过信号处理的读者不太友好.同时,很多教程只讲是什么

(转载)图像处理(卷积)

图像处理-线性滤波-1 基础(相关算子.卷积算子.边缘效应) 这里讨论利用输入图像中像素的小邻域来产生输出图像的方法,在信号处理中这种方法称为滤波(filtering).其中,最常用的是线性滤波:输出像素是输入邻域像素的加权和. 1.相关算子(Correlation Operator) 定义:,  即 ,其中h称为相关核(Kernel). 步骤: 1)滑动核,使其中心位于输入图像g的(i,j)像素上 2)利用上式求和,得到输出图像的(i,j)像素值 3)充分上面操纵,直到求出输出图像的所有像素值

图像处理之基础---周末戏说卷积

戏说:卷积 卷积 在图像中其实就是乘积 求和 替代 已达到 平滑或者过滤的效果 参考公式 xiaojiang同学,最近总是和卷积打交道,工作需要,每天都要碰到它好几次,不胜烦恼,因为在大学时候学信号与系统的时候就没学会,我于是心想一定要把卷积完全搞明白.正好同办公室的同学也问我什么是卷积,师姐昨天也告诉我说:“我也早就想把这个问题搞明白了!”经过一段时间的思考之后,有一些很有趣的体会和大家分享. 听说卷积这种运算式物理学家发明的,在实际中用得不亦乐乎,而数学家却一直没有把运算的意义彻底搞明白.仔

超详细介绍 图像处理(卷积)(转)

图像处理(卷积)作者太棒了 原文 http://blog.sina.com.cn/s/blog_4bdb170b01019atv.html 图像处理-线性滤波-1 基础(相关算子.卷积算子.边缘效应) 这里讨论利用输入图像中像素的小邻域来产生输出图像的方法,在信号处理中这种方法称为滤波(filtering).其中,最常用的是线性滤波:输出像素是输入邻域像素的加权和. 1.相关算子(Correlation Operator) 定义:,  即 ,其中h称为相关核(Kernel). 步骤: 1)滑动核