Windows进程通信 -- 共享内存

享内存的方式原理就是将一份物理内存映射到不同进程各自的虚拟地址空间上,这样每个进程都可以读取同一份数据,从而实现进程通信。因为是通过内存操作实现通信,因此是一种最高效的数据交换方法。

共享内存在 Windows 中是用 FileMapping 实现的,从具体的实现方法上看主要通过以下几步来实现:

1、调用 CreateFileMapping 创建一个内存文件映射对象;

HANDLE CreateFileMapping(
  HANDLE hFile,              // handle to file to map
  LPSECURITY_ATTRIBUTES lpFileMappingAttributes,
                             // optional security attributes
  DWORD flProtect,           // protection for mapping object
  DWORD dwMaximumSizeHigh,   // high-order 32 bits of object size
  DWORD dwMaximumSizeLow,    // low-order 32 bits of object size
  LPCTSTR lpName             // name of file-mapping object
);

通过这个API函数 将创建一个内存映射文件的内核对象,用于映射文件到内存。与虚拟内存一样,内存映射文件可以用来保留一个地址空间的区域,并将物理存储器提交
给该区域。它们之间的差别是,物理存储器来自一个已经位于磁盘上的文件,而不是系统的页文件。

hFile:用于标识你想要映射到进程地址空间中的文件句柄。该句柄可以通过调用C r e a t e F i l e函数返回。这里,我们并不需要一个实际的文件,所以,就不需要调用 CreateFile 创建一个文件, hFile 这个参数可以填写 INVALID_HANDLE_VALUE; 

lpFileMappingAttributes:参数是指向文件映射内核对象的 SECURITY_ATTRIBUTES结构的指针,通常传递的值是 N U L L;

flProtect:对内存映射文件的安全设置(PAGE_READONLY 以只读方式打开映射;PAGE_READWRITE 以可读、可写方式打开映射;PAGE_WRITECOPY 为写操作留下备份)

dwMaximumSizeHigh:文件映射的最大长度的高32位。

dwMaximumSizeLow:文件映射的最大长度的低32位。如这个参数和dwMaximumSizeHigh都是零,就用磁盘文件的实际长度。

lpName:指定文件映射对象的名字,别的进程就可以用这个名字去调用 OpenFileMapping 来打开这个 FileMapping 对象。
 
如果创建成功,返回创建的内存映射文件的句柄,如果已经存在,则也返回其句柄,但是调用 GetLastError()返回的错误码是:183(ERROR_ALREADY_EXISTS),如果创建失败,则返回NULL;

2、调用 MapViewOfFile 映射到当前进程的虚拟地址上;

如果调用CreateFileMapping成功,则调用MapViewOfFile函数,将内存映射文件映射到进程的虚拟地址中;

LPVOID MapViewOfFile(
  HANDLE hFileMappingObject,  // file-mapping object to map into
                              // address space
  DWORD dwDesiredAccess,      // access mode
  DWORD dwFileOffsetHigh,     // high-order 32 bits of file offset
  DWORD dwFileOffsetLow,      // low-order 32 bits of file offset
  DWORD dwNumberOfBytesToMap  // number of bytes to map
);
 
hFileMappingObject:CreateFileMapping()返回的文件映像对象句柄。
dwDesiredAccess: 映射对象的文件数据的访问方式,而且同样要与CreateFileMapping()函数所设置的保护属性相匹配。
dwFileOffsetHigh: 表示文件映射起始偏移的高32位.
dwFileOffsetLow: 表示文件映射起始偏移的低32位.
dwNumberOfBytesToMap :文件中要映射的字节数。为0表示映射整个文件映射对象。

3、在接收进程中打开对应的内存映射对象

在数据接收进程中,首先调用OpenFileMapping()函数打开一个命名的文件映射内核对象,得到相应的文件映射内核对象句柄hFileMapping;如果打开成功,则调用MapViewOfFile()函数映射对象的一个视图,将文件映射内核对象hFileMapping映射到当前应用程序的进程地址,进行读取操作。(当然,这里如果用CreateFileMapping也是可以获取对应的句柄)

HANDLE OpenFileMapping(
  DWORD dwDesiredAccess,  // access mode
  BOOL bInheritHandle,    // inherit flag
  LPCTSTR lpName          // pointer to name of file-mapping object
);
 
dwDesiredAccess:同MapViewOfFile函数的dwDesiredAccess参数
bInheritHandle :如这个函数返回的句柄能由当前进程启动的新进程继承,则这个参数为TRUE。

lpName :指定要打开的文件映射对象名称。

4、进行内存映射文件的读写

一旦MapViewOfFile调用成功,就可以像读写本进程地址空间的内存区一样,进行内存的读写操作了。

//读操作:

// 打开成功,映射对象的一个视图,得到指向共享内存的指针,显示出里面的数据
pBuffer = MapViewOfFile(hMap, FILE_MAP_ALL_ACCESS, 0, 0, 0);
if (pBuffer)
{
cout << ((CThostFtdcDepthMarketDataField *)pBuffer)->LastPrice << endl;
//cout << "读取共享内存数据:" << ((CThostFtdcDepthMarketDataField *)pBuffer)->LastPrice << endl;
}
else
{
cout << "打开共享数据失败!" << endl;
}

//写操作:

// 映射对象的一个视图,得到指向共享内存的指针,设置里面的数据
pBuffer = MapViewOfFile(hMap, FILE_MAP_ALL_ACCESS, 0, 0, 0);
if (pBuffer)
{
memcpy((CThostFtdcDepthMarketDataField*)pBuffer, DepthMarketData, sizeof(CThostFtdcDepthMarketDataField));
//cout << "写入共享内存数据:" << ((CThostFtdcDepthMarketDataField *)pBuffer)->LastPrice << endl;
}
else
{
cout << "打开共享数据失败!" << endl;
}

5、清理内核对象

在用完后,要取消本进程地址空间的映射,并释放内存映射对象。

    //取消本进程地址空间的映射;
    UnmapViewOfFile(pLocalMem);  

    pLocalMem=NULL;
    //关闭文件映射内核文件
    CloseHandle(hFileMapping);
时间: 07-08

Windows进程通信 -- 共享内存的相关文章

进程通信之内存共享篇

进程通信之_ 内存共享 概念:共享内存是被多个进程共享的一部分物理内存.共享内存是进程间的共享数最快的方法,一个进程向共享内存区域写入数据,共享这个内存区域的所有进程就可以写入数据,所有进程就可以立刻看到其中的内容. 实现步骤;1.创建共享内存,使用shmget函数2.映射共享内存,将这段创建的共享内存映射到具体的进程空间去,使用shmat函数 创建:int shmget (key_t key,int size,int shmflg)key 标识内存功效的键值0/ipc_private.成功返回

Windows环境下共享内存通信

一.引言 在Windows程序中,各个进程之间常常需要交换数据,进行数据通讯.WIN32 API提供了许多函数使我们能够方便高效的进行进程间的通讯,通过这些函数我们可以控制不同进程间的数据交换. 进程间通讯(即:同机通讯)和数据交换有多种方式:消息.共享内存.匿名(命名)管道.邮槽.Windows套接字等多种技术."共享内存"(shared memory)可以定义为对一个以上的进程是可见的内存或存在于多个进程的虚拟地址空间.例如:如果两个进程使用相同的DLL,只把DLL的代码页装入内存

C# .Net 多进程同步 通信 共享内存 内存映射文件 Memory Mapped 转

原文:C# .Net 多进程同步 通信 共享内存 内存映射文件 Memory Mapped 转 节点通信存在两种模型:共享内存(Shared memory)和消息传递(Messages passing). 内存映射文件对于托管世界的开发人员来说似乎很陌生,但它确实已经是很远古的技术了,而且在操作系统中地位相当.实际上,任何想要共享数据的通信模型都会在幕后使用它. 内存映射文件究竟是个什么?内存映射文件允许你保留一块地址空间,然后将该物理存储映射到这块内存空间中进行操作.物理存储是文件管理,而内存

Linux Linux程序练习十五(进程间的通信共享内存版)

/* * 题目: * 编写程序,要去实现如下功能: 父进程创建子进程1和子进程2.子进程1向子进程2发送可靠信号,并传送额外数据为子进程1的pid*2; 子进程2接受可靠信号的值,并发送给父进程,父进程把接受的值进行打印. 提示:用sigqueue和sigaction实现 * */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include &

Linux 进程间共享内存 SYSTEMV

#include <sys/ipc.h> #include <sys/shm.h> int shmget(key_t key, int size, int shmflag) key取值为IPC_PRIVATE时,shmflag应为IPC_CREAT,则新建共享内存key取值不为IPC_PRIVATE则应为已创建的key值,shmflag不应包含IPC_CREAT和IPC_EXCL,且大小小于等于原共享内存大小成功则返回共享内存id,失败返回-1 void *shmat(int sh

windows进程中的内存结构(好多API,而且VC最聪明)

在阅读本文之前,如果你连堆栈是什么多不知道的话,请先阅读文章后面的基础知识.   接触过编程的人都知道,高级语言都能通过变量名来访问内存中的数据.那么这些变量在内存中是如何存放的呢?程序又是如何使用这些变量的呢?下面就会对此进行深入的讨论.下文中的C语言代码如没有特别声明,默认都使用VC编译的release版.   首先,来了解一下 C 语言的变量是如何在内存分部的.C 语言有全局变量(Global).本地变量(Local),静态变量(Static).寄存器变量(Regeister).每种变量都

IPC(SystemV) 之 共享内存

很久以来我都是只闻其名,未见其形.终于在这次系统的学习linux编程中接触到了共享内存.果然很牛. 上一篇文章中我们讲的信号量,个人感觉,严格的说,信号量只是进城通信的辅助.而共享内存才真正实现了进程通信. 共享内存机制允许两个不想关的进程访问同一段物理内存,当然得是一台主机. 头文件<sys/shm.h>   和信号量的情况一样,也需要包含sys/types.h 和 sys/ipc.h .当然有可能已经包含在了sys/shm.h中了. 共享内存函数如下: int shmget(key_t k

撸代码--linux进程通信(基于共享内存)

1.实现亲缘关系进程的通信,父写子读 思路分析:1)首先我们须要创建一个共享内存. 2)父子进程的创建要用到fork函数.fork函数创建后,两个进程分别独立的执行. 3)父进程完毕写的内容.同一时候要保证子进程退出后,在删除共享内存. 4)子进程完毕读的内容. 效果展示:                 代码展示:           #include <string.h> #include <unistd.h> #include <sys/types.h> #inc

进程通信之共享内存

共享内存 共享内存就是允许两个不相关的进程访问同一个逻辑内存.共享内存是在两个正在运行的进程之间共享和传递数据的一种非常有效的方式.不同进程之间共享的内存通常安排为同一段物理内存.进程可以将同一段共享内存连接到它们自己的地址空间中,所有进程都可以访问共享内存中的地址,就好像它们是由用C语言函数malloc分配的内存一样.而如果某个进程向共享内存写入数据,所做的改动将立即影响到可以访问同一段共享内存的任何其他进程. 共享内存并未提供同步机制,也就是说,在第一个进程结束对共享内存的写操作之前,并无自