数据库与数据仓库的比较Hbase——Hive

数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。

(1) 面向主题:指数据仓库中的数据是按照一定的主题域进行组织。

(2)集成:指对原有分散的数据库数据经过系统加工, 整理得到的消除源数据中的不一致性。

(3)相对稳定:指一旦某个数据进入数据仓库以后只需要定期的加载、刷新。

(4)反映历史变化:指通过这些信息,对企业的发展历程和未来趋势做出定量分析预测。

主要区别在于:

(1)数据库是面向事务的设计,数据仓库是面向主题设计的。

(2)数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。

(3)数据库设计是尽量避免冗余,数据仓库在设计是有意引入冗余。

(4)数据库是为捕获数据而设计,数据仓库是为分析数据而设计。

时间: 07-29

数据库与数据仓库的比较Hbase——Hive的相关文章

Hadoop企业级完整训练:Rocky的16堂课(HDFS&MapReduce&HBase&Hive&Zookeeper&Sqoop&Pig&Flume&Project) - 0515

Hadoop是云计算的事实标准软件框架,是云计算理念.机制和商业化的具体实现,是整个云计算技术学习中公认的核心和最具有价值内容. 如何从企业级开发实战的角度开始,在实际企业级动手操作中深入浅出并循序渐进的掌握Hadoop是本课程的核心.   云计算学习者的心声: 如何从企业级开发的角度,不断动手实际操作,循序渐进中掌握Hadoop,直到能够直接进行企业级开始,是困惑很多对云计算感兴趣的朋友的核心问题,本课程正是为解决此问题而生,学习者只需要按照一步步的跟着视频动手操作,即可完全无痛掌握Hadoo

王家林的云计算分布式大数据Hadoop征服之旅:HDFS&MapReduce&HBase&Hive&集群管理

一:课程简介: 作为云计算实现规范和实施标准的Hadoop恰逢其时的应运而生,使用Hadoop用户可以在不了解分布式底层细节的情况下开发出分布式程序,从而可以使用众多廉价的计算设备的集群的威力来高速的运算和存储,而且Hadoop的运算和存储是可靠的.高效,的.可伸缩的,能够使用普通的社区服务器出来PB级别的数据,是分布式大数据处理的存储的理想选择. 本课程会助你深入浅出的掌握Hadoop开发(包括HDFS.MapReduce.HBase.Hive等),并且在此基础上掌握Hadoop集群的配置.维

使用sqoop将MySQL数据库中的数据导入Hbase

使用sqoop将MySQL数据库中的数据导入Hbase 前提:安装好 sqoop.hbase. 下载jbdc驱动:mysql-connector-java-5.1.10.jar 将 mysql-connector-java-5.1.10.jar 拷贝到 /usr/lib/sqoop/lib/ 下 MySQL导入HBase命令: sqoop import --connect jdbc:mysql://10.10.97.116:3306/rsearch --table researchers --h

大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解

引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单机的搭建,是因为作为个人学习的话,单机已足以,好吧,说实话是自己的电脑不行,使用虚拟机实在太卡了... 整个的集群搭建是在公司的测试服务搭建的,在搭建的时候遇到各种各样的坑,当然也收获颇多.在成功搭建大数据集群之后,零零散散的做了写笔记,然后重新将这些笔记整理了下来.于是就有了本篇博文. 其实我在搭

大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集

引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单机的搭建,是因为作为个人学习的话,单机已足以,好吧,说实话是自己的电脑不行,使用虚拟机实在太卡了... 整个的集群搭建是在公司的测试服务搭建的,在搭建的时候遇到各种各样的坑,当然也收获颇多.在成功搭建大数据集群之后,零零散散的做了写笔记,然后重新将这些笔记整理了下来.于是就有了本篇博文. 其实我在搭

数据库和数据仓库的区别

简而言之,数据库是面向事务的设计,数据仓库是面向主题设计的. 数据库一般存储在线交易数据,数据仓库存储的一般是历史数据. 数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计. 数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表.维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID. 单 从概念上讲,有些晦涩.任何技术都是为应用服务的,结合应用可以很容易地

老李分享:大数据,数据库,数据仓库之间是什么关系

老李分享:大数据,数据库,数据仓库之间是什么关系 poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣,请大家咨询qq:908821478,咨询电话010-84505200. 首先简单的看一下云计算与大数据的概念. 1)云计算:云计算本质上是一种计算资源集中分布和充分共享的效用计算模式,其中集中是为了计算资源的集约化管理,分布是便于扩展计算能力.集中分布式是针对云服务提供商的,充分共享是针对用户,在云计算中,虽然对

数据库与数据仓库

商业智能又名商务智能,英文为Business Intelligence,简写为BI.商业智能的概念于1996年最早由加特纳集团(Gartner Group)提出,加特纳集团将商业智能定义为:商业智能描述了一系列的概念和方法,通过应用基于事实的支持系统来辅助商业决策的制定.商业智能技术提供使企业迅速分析数据的技术和方法,包括收集.管理和分析数据,将这些数据转化为有用的信息,然后分发到企业各处. 商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具.这里所谈的数据包

HDFS, YARN, HBase, Hive, ZooKeeper端口说明

这里包含我们使用到的组件:HDFS, YARN, HBase, Hive, ZooKeeper: 件 节点 默认端口 配置 用途说明 HDFS DataNode 50010 dfs.datanode.address datanode服务端口,用于数据传输 HDFS DataNode 50075 dfs.datanode.http.address http服务的端口 HDFS DataNode 50475 dfs.datanode.https.address https服务的端口 HDFS Dat