关于朴素贝叶斯

朴素贝叶斯或者说基于贝叶斯理论的决策方法都是生成式模型。那么什么是生成式模型呢?生成式模型和判别式模型的概念分别是什么?大体来说,给定数据集x,可以直接通过建模P(c|x)来预测c,这样得到的是判别式模型。像BP网络,支持向量机,决策树都属于判别式模型。如果先对联合概率分布P(x,c)建模,然后再由此获得P(c|x),这样得到的生成式模型,例如朴素贝叶斯。

朴素贝叶斯应用的先决条件是“属性条件独立假设”,即已知类别,假设所有属性相互独立。

时间: 09-19

关于朴素贝叶斯的相关文章

《机器学习实战》笔记——朴素贝叶斯

运用贝叶斯公式(朴素贝叶斯假设每个特征每个特征都是独立的)可以解决的问题有,已知某些特征,用来判断某情况发生的可能性大小,设置可能性最大的情况作为预测值. 是一种监督算法. 广泛应用于垃圾邮件检测等等. 1 # _*_coding:utf-8_*_ 2 from numpy import * 3 4 # 4-1 词表到向量的转换函数(实验样本) 5 def loadDataSet(): 6 postingList = [['my', 'dog', 'has', 'flea', 'problems

我理解的朴素贝叶斯模型

我理解的朴素贝叶斯模型 我想说:"任何事件都是条件概率."为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础.换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率. 条件概率是朴素贝叶斯模型的基础. 假设,你的xx公司正在面临着用户流失的压力.虽然,你能计算用户整体流失的概率(流失用户数/用户总数).但这个数字并没有多大意义,因为资源是有限的,利用这个数字你只能撒胡椒面似的把钱撒在所有用户上,显然不经济.你非常想根据用户的某种行为,精确地估计一

NLP系列(4)_朴素贝叶斯实战与进阶(转)

http://blog.csdn.net/han_xiaoyang/article/details/50629608 作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 http://blog.csdn.net/longxinchen_ml/article/details/50629613 声明:版权所有,转载请联系作者并注明出处 1.引言 前两篇博文介绍了朴素贝叶

朴素贝叶斯

一.随机变量 可以取不同的值,不同的值有不同的概率. 看到随机变量取任何值,都要想到背后有个概率,如果是连续变量,在每一点的概率是0,连续型随机变量通常只考虑概率密度. 机器学习就是通过一堆随机变量预测另一个随机变量,先假设随机变量之间的概率分布,然后从数据中估计分布的参数. 任何概率模型的假设都是简化,不能完全刻画数据,并且每个模型都有其适用范围,比如朴素贝叶斯对于文本分类效果好. 二.贝叶斯定理 贝叶斯定理给出了从一种条件概率P(B|A)怎么推到另一种条件概率P(A|B): 这个东西有什么用

机器学习实战读书笔记(四)基于概率论的分类方法:朴素贝叶斯

4.1 基于贝叶斯决策理论的分类方法 朴素贝叶斯 优点:在数据较少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据 贝叶斯决策理论的核心思想:选择具有最高概率的决策. 4.2 条件概率 4.3 使用条件概率来分类 4.4 使用朴素贝叶斯进行文档分类 朴素贝叶斯的一般过程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法 5.测试算法 6.使用算法 朴素贝叶斯分类器中的另一个假设是,每个特征同等重要. 4.5 使用Python进行文本分类

朴素贝叶斯分类器

预备知识: 贝叶斯公式:A.B事件.在A发生条件下B发生的概率=在B发生条件下A发生的概率*B发生的概率/A发生的概率 P(B|A)=P(A|B)P(B) / P(A) 全概率公式: 特别的,设实验E的样本空间为S,A为E的事件,B1,B2,...,Bn为S的一个划分,且P(Bi)>0(i=1,2,...,n),则有P(A)=P(A|B1)*P(B1) + P(A|B2)*P(B2) + ... + P(A|Bn)*P(Bn) 故有贝叶斯的另一种形式: P(B[j]|A[i])=P(A[i]|B

挖掘算法(1)朴素贝叶斯算法

原文:http://www.blogchong.com/post/NaiveBayes.html 1 文档说明 该文档为朴素贝叶斯算法的介绍和分析文档,并且结合应用实例进行了详细的讲解. 其实朴素贝叶斯的概念以及流程都被写烂了,之所以写这些是方便做个整理,记录备忘.而实例部分进行了详细的描述,网络上该实例比较简单,没有过程. 至于最后部分,则是对朴素贝叶斯的一个扩展了,当然只是简单的描述了一下过程,其中涉及到的中文分词以及TFIDF算法,有时间再具体补上. 2 算法介绍 2.1 贝叶斯定理 (1

机器学习(五)—朴素贝叶斯

最近一直在看机器学习相关的算法,今天我们学习一种基于概率论的分类算法—朴素贝叶斯.本文在对朴素贝叶斯进行简单介绍之后,通过Python编程加以实现. 一  朴素贝叶斯概述                                                               1 前言 “贝叶斯”又是一个响当当的名字,刚开始接触的是贝叶斯定理.贝叶斯分类器是一类分类算法的总称,是两种最为广泛的分类模型之一,另一种就是上篇中的决策树了.贝叶斯分类均以贝叶斯定理为基础,朴素贝叶斯是

【机器学习实验】使用朴素贝叶斯进行文本的分类

引言 朴素贝叶斯由贝叶斯定理延伸而来的简单而强大的概率模型,它根据每个特征的概率确定一个对象属于某一类别的概率.该方法基于一个假设,所有特征需要相互独立,即任一特征的值和其他特征的值没有关联关系. 虽然这种条件独立的假设在许多应用领域未必能很好满足,甚至是不成立的.但这种简化的贝叶斯分类器在许多实际应用中还是得到了较好的分类精度.训练模型的过程可以看作是对相关条件概率的计算,它可以用统计对应某一类别的特征的频率来估计. 朴素贝叶斯最成功的一个应用是自然语言处理领域,自然语言处理的的数据可以看做是