H.264 / MPEG-4 Part 10 White Paper-翻译

1. Introduction

  Broadcast(广播) television and home entertainment(娱乐) have been revolutionised(彻底改变) by the advent(出现) of digital TV andDVD-video.(--广播电视和家庭娱乐方式被彻底改变了在数字电视和DVD-Video出现之后--) These applications and many more were made possible by the standardisation of video compression technology.(--这些应用和其他的许多东西慢慢变得可能实现在这个视频压缩技术标准之后--) The next standard in the MPEG series(--MPEG系列的下一个标准--), MPEG4 is enabling(启用) a new generation of (代名)internet-based video applications(--MPEG4为新一代的给予因特网的视频应用提供了可能--) whilst(同时 ) the ITU-T H.263 standard for video compression is now widely used in video conferencing(会议) systems.(--ITU-T H.263视频压缩标准在现在被广泛的用于视频会议系统--)

  MPEG4 (Visua(视频)l) and H.263 are standards that are based on video compression (“video coding”) technology from circa. 1995.(--MPEG4和H.263是视频压缩(视频编码)技术的标准大约从1995年开始。--) The groups responsible for these standards(--一下组织负责这些东西的标准--), the Motion Picture Experts Group and the Video Coding Experts Group (MPEG and VCEG) (--运动图像专家组,和视频编码专家组--)are in the final stages of developing a new standard that promises to significantly outperform MPEG4 and H.263(--致力于开发一个比MPEG4更加--,), providing better compression of video images together with a range of features supporting high-quality, low-bitrate streaming video.(--高性能,高品质,低比特流--) The history of the new standard, “Advanced Video Coding” (AVC), goes back at least 7 years.  

  After finalising(敲定) the original(原始) H.263 standard for video telephony(电话) in 1995(--在1995年为了视频电话敲定H.263原始标准--), the ITU-T Video Coding Experts Group (VCEG) started  work on two further development areas(ITU-T视频编码专家组开始在两个深入的领域发展:): a “short-term” effort to add extra features(特点,特性) to H.263 (resulting in Version 2  of the standard) (--一个是通过短期的努力去增加H.263更多的特性(制定出来版本2的标准)--)and a “long-term” effort to develop a new standard for low bit rate visual communications.(--另一个是通过长期的努力致力于发展一个新的版本为了适应低比特流的视频压缩--) The long-term effort led to the draft “H.26L” standard,(--长期项目组努力的领导起草了H.26L标准--) offering significantly(显著) better video compression efficiency(效率) than previous ITU-T standards(--提供了明显优于ITU-U标准的压缩效率--). In 2001, the ISO Motion Picture Experts Group (MPEG) recognised the potential benefits(潜在的好处) of H.26L(--2001年MPEG小组发现了H.264潜在的有点--) and the Joint Video Team (JVT) was formed,(JVM团队就被提出来了。) including experts from MPEG and VCEG(包含了来自这两个小组的专家). JVT’s main task is to develop the draft H.26L “model” into a full International Standard. (JVM小组的主要任务就是将“H.26L标准发展为国际标准”)In fact, the outcome will be two identical standards(事实上他们推出了两个标准): ISO MPEG4 Part 10 of MPEG4 and ITU-T H.264.(。。。就这两个) The “official” title of the new standard is Advanced Video Coding (AVC)(官方声称这个才是真正的新版本); however, it is widely known by its old working title, H.26L and by its ITU document number, H.264 [1].(然而更加广为人知的是采用旧的命名方式的。。。。。)

2. H.264 CODEC

In common with earlier standards (such as MPEG1, MPEG2 and MPEG4)(--和之前版本差不多的是--), the H.264 draft standard does not explicitly(明确的) define a CODEC (enCOder / DECoder pair). (--H.264并没有显式的定义一个编解码机器--)Rather, the standard defines the syntax of an encoded video bitstream together with the method of decoding this bitstream.(--而,这个标准只定义了将视频编码为比特流和从比特流解码的方法。--) In practice, however, a compliant encoder and decoder are likely to include the functional elements shown in Figure 2-1 and Figure 2-2. (--然而,一个合格的编解码机器需要包含图中2-1和2-2的功能元素--)Whilst the functions shown in these Figures are likely to be necessary for compliance(同时对于一个合格的编解码机器来说能过表现出这些功能是十分重要的。), there is scope for considerable variation in the structure of the CODEC(编解码机器还是有相当大的变异空间的). The basic functional elements(这些基本功能元素) (prediction, transform, quantization, entropy encoding)(预测,传输,量化,熵编码) are little different from previous standards (和之前的标准差不多)(MPEG1, MPEG2, MPEG4, H.261, H.263); the important changes in H.264 occur in the details of each functional element.(H.264最主要的变化实在这些模块的实现细节上面。)

The Encoder (Figure 2-1) includes two dataflow paths(编码包括两条数据流路径), a “forward” path (left to right, shown in blue)(一条向前的,(从左到右))and a “reconstruction” path (right to left, shown in magenta).(还有一条重构路径 从右到左,品红色的路径)The dataflow path in the Decoder (Figure 2-2) is shown from right to left to illustrate the similarities between Encoder and Decoder.(解码器的数据流以从右到左的方式表示,一次来说明,编解码机器的共同点‘。)

2.1 Encoder (forward path)


  An input frame F n is presented for encoding. The frame is processed in units of a macroblock (corresponding to 16x16 pixels in the original image). Each macroblock is encoded in intra or inter mode. In either case, a prediction macroblock P is formed based on a reconstructed frame. In Intra mode, P is formed from samples in the current frame n that have previously encoded, decoded and reconstructed (uF’ n in the Figures; note that the unfiltered samples are used to form P). In Inter mode, P is formed by motion-compensated prediction from one or more reference frame(s). In the Figures, the reference frame is shown as the previous encoded frame F’ n-1 ; however, the predicton for each macroblock may be formed from one or two past or future frames (in time order) that have already been encoded and reconstructed.
  The prediction P is subtracted from the current macroblock to produce a residual or difference macroblock D n . This is transformed (using a block transform) and quantized to give X, a set of quantized transform coefficients. These coefficients are re-ordered and entropy encoded. The entropy-encoded coefficients, together with side information required to decode the macroblock (such as the macroblock prediction mode, quantizer step size, motion vector information describing how the macroblock was motion-compensated, etc) form the compressed bitstream. This is passed to a Network Abstraction Layer (NAL) for transmission or storage.

时间: 11-08

H.264 / MPEG-4 Part 10 White Paper-翻译的相关文章


摘自: H.264_MPEG-4 Part 10 White Paper.pdf In common with earlier standards (such as MPEG1, MPEG2 and MPEG4), the H.264 draft standard does not explicitly define a CODEC (enCOder / DECoder pair). Rather, the standard defines the syntax of an encoded vi


1.  引言       随着信息产业的发展,人们对信息资源的要求已经逐渐由文字和图片过渡到音频和视频,并越来越强调获取资源的实时性和互动性.但人们又面临着另外一种不可避免的尴尬,就是在网络上看到生动清晰的媒体演示的同时,不得不为等待传输文件而花费大量时间.为了解决这个矛盾,一种新的媒体技术应运而生,这就是流媒体技术.流媒体由于具有启动时延小.节省客户端存储空间等优势,逐渐成为人们的首选,流媒体网络应用也在全球范围内得到不断的发展.其中实时流传输协议 RTP 详细说明了在互联网上传递音频和视频的

视频通讯 视频技术H.264与AVS的比较

视频编码技术在过去几年最重要的发展之一是由ITU和ISO/IEC的联合视频小组 (JVT)开发了H.264/MPEG-4 AVC[8]标准.在发展过程中,业界为这种新标准取了许多不同的名称.ITU在1997年开始利用重要的新编码工具处理H.26L(长期),结果令人鼓舞,于是ISO决定联手ITU组建JVT并采用一个通用的标准.因此,大家有时会听到有人将这项标准称为JVT,尽管它并非正式名称.ITU在2003年5月批准了新的H.264标准.ISO在2003年10 月以MPEG-4 Part 10.高


1.  引言        随 着信息产业的发展,人们对信息资源的要求已经逐渐由文字和图片过渡到音频和视频,并越来越强调获取资源的实时性和互动性.但人们又面临着另外一种不可避免 的尴尬,就是在网络上看到生动清晰的媒体演示的同时,不得不为等待传输文件而花费大量时间.为了解决这个矛盾,一种新的媒体技术应运而生,这就是流媒体技 术.流媒体由于具有启动时延小.节省客户端存储空间等优势,逐渐成为人们的首选,流媒体网络应用也在全球范围内得到不断的发展.其中实时流传输协议 RTP 详细说明了在互联网上传递音频


H.264码流打包分析 SODB 数据比特串-->最原始的编码数据 RBSP 原始字节序列载荷-->在SODB的后面填加了结尾比特(RBSP trailing bits 一个bit"1")若干比特"0",以便字节对齐. EBSP 扩展字节序列载荷-- >在RBSP基础上填加了仿校验字节(0X03)它的原因是: 在NALU加到Annexb上时,需要填加每组NALU之前的开始码 StartCodePrefix,如果该NALU对应的slice为一帧的开始


转自:http://wmnmtm.blog.163.com/blog/static/38245714201142883032575/ 要播放HDTV,就首先要正确地解开封装,然后进行视频音频解码.所以我们需要分离器,视频解码器和音频解码器,俗称hdtv的“三件套”,又统称滤镜. H264的分离器: 常见的有Gabest MP4分离器,就是MP4splitter,也是Gabest编写的,Halli的分离器和NDigital分离器等. H264的视频解码器: CoreAVC的H264视频解码器Cor

x264 - 高品质 H.264 编码器

转自:http://www.5i01.cn/topicdetail.php?f=510&t=3735840&r=18&last=48592660 H.264 / MPEG-4 AVC 是优秀的视讯编码格式就目前已成熟的视讯编码格式而言,H.264的压缩率是最佳的.压缩率极高,可以只用很低 bitrate 提供堪用画质. 而 x264 为免费开放原始码的 H.264 / MPEG-4 AVC 编码器,是目前编码效率最高的开放原始码 H.264 编码器. 此文只是基础知识,说明只是大略


NAL技术 1.NAL概述NAL全称Network Abstract Layer, 即网络抽象层.在H.264/AVC视频编码标准中,整个系统框架被分为了两个层面:视频编码层面(VCL)和网络抽象层面(NAL).其中,前者负责有效表示视频数据的内容,而后者则负责格式化数据并提供头信息,以保证数据适合各种信道和存储介质上的传输.现实中的传输系统是多样化的,其可靠性,服务质量,封装方式等特征各不相同,NAL这一概念的提出提供了一个视频编码器和传输系统的友好接口,使得编码后的视频数据能够有效地在各种不


大概前五六年之前写过的一个大体分析H.264格式,不是很详细,可以大致看看有哪些格式. H.264码流结构解析 那个时候上传的百度文库,以前记得有多积分,现在都不能下载了,还要充钱才可以.真是~~~ 1. H.264简介 MPEG(Moving Picture Experts Group)和VCEG(Video Coding Experts Group)已经联合开发了一个比早期研发的MPEG 和H.263性能更好的视频压缩编码标准,这就是被命名为AVC(Advanced Video Coding