ubuntu16.04 安装 caffe cuda 相关流程

不多说了,经历了很多莫名其妙的错误最后终于安装好了,直接放安装脚本:

#!/bin/bash
#安装时要注意有些库可能安装失败以及安装caffe有和protobuf相关错误时可能需要重新对protobuf进行make install
cd /home/zw/softwares #需要事先下载对应版本的cuda
sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda

cd /home/zw/git_home/ #我存放git项目的目录
git clone https://github.com/google/protobuf.git
sudo apt-get install autoconf automake libtool curl make g++ unzip
cd protobuf
./autogen.sh
./configure --prefix=/usr
make -j8
make check -j8
sudo make install -j8
sudo ldconfig # refresh shared library cache.

cd /home/zw/git_home/
git clone https://github.com/BVLC/caffe.git
cd caffe
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
cp Makefile.config.example Makefile.config #config中如果启用anaconda目录改成anaconda2(安装时默认名称),否则sudo make pycaffe无法编译成功。不过建议不需要启用anaconda目录,因为没这个必要,后续只要在PYTHONPATH路径中加入caffe和安装protobuf即可。另外,如果事先安装了opencv3.0需要在Makefile.cinfig中修改对应选项

read -rsp $‘更改你的Makefile.config, 完成后Press any key to continue...\n‘ -n1 key

make all -j8
make test -j8
make runtest

make pycaffe -j8

cd /home/zw/git_home/protobuf/python
~/anaconda2/bin/python setup.py install #安装对应版本的protobuf,这里要特别注意,如果使用conda安装最新版本的protobuf,可能出现不兼容问题的,因为上面的caffe是用这个版本的protobuf编译的,切记!这里是我自己尝试出来的,花了不少时间
#echo "export PYTHONPATH=~/git_home/protobuf/python:$PYTHONPATH" >> ~/.bashrc #如果你用的时zsh,那么应该导入到~/.zshrc
echo "export PYTHONPATH=~/git_home/caffe/python:$PYTHONPATH" >> ~/.bashrc
echo "export PATH=~/git_home/caffe/build/tools:$PATH" >> ~/.bashrc

Makefile.config如下:

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#    You should not set this flag if you will be reading LMDBs with any
#    possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you‘re using OpenCV 3
OPENCV_VERSION := 3 #事先安装了使用了opencv3,这里要启用

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda #使用了cuda,这里要启用
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20         -gencode arch=compute_20,code=sm_21         -gencode arch=compute_30,code=sm_30         -gencode arch=compute_35,code=sm_35         -gencode arch=compute_50,code=sm_50         -gencode arch=compute_52,code=sm_52         -gencode arch=compute_60,code=sm_60         -gencode arch=compute_61,code=sm_61         -gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7         /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it‘s in root.
 #ANACONDA_HOME := $(HOME)/anaconda2
 #PYTHON_INCLUDE := $(ANACONDA_HOME)/include #         $(ANACONDA_HOME)/include/python2.7 #         $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m #                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c ‘import numpy.core; print(numpy.core.__file__)‘))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
#INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
#LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that ‘make runtest‘ will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @
时间: 05-08

ubuntu16.04 安装 caffe cuda 相关流程的相关文章

Ubuntu16.04安装tensorflow+安装opencv+安装openslide+安装搜狗输入法

Ubuntu16.04在cuda以及cudnn安装好之后,安装tensorflow,tensorflow以及opencv可以到网上下载对应的安装包并且直接在安装包所在的路径下直接通过pip与conda进行安装,如下图所示: 前提是要下载好安装包.安装好tensorflow之后还需要进行在~/.bashrc文件中添加系统路径,如下图所示 Openslide是医学图像一个重要的库,这里给出三条命令进行安装 sudo apt-get install openslide-tools sudo apt-g

ubuntu16.04安装部署监控系统zabbix2.4

Ubuntu16.04安装部署监控系统Zabbix2.4 第一部分,php+mysql+nginx组件安装 1.系统更新 sudo apt-get update && sudo apt-get upgrade 2.安装php-fpm 检索系统当前自带的PHP版本:apt-cache search php-fpm 安装依赖包:sudo apt-get install make  bison g++ build-essential libncurses5-dev cmake 安装php-fpm

Ubuntu16.04安装opencv for python/c++

Ubuntu16.04安装opencv for python/c++ 网上关于opencv的安装已经有了不少资料,但是没有一篇资料能让我一次性安装成功,因此花费了大量时间去解决各种意外,希望这篇能给一些人带去便利,节省时间. 1.安装OpenCV所需的库 1 sudo apt-get install build-essential 2 sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavforma

Ubuntu16.04 安装JDK Tomcat

Ubuntu16.04安装jdk,下载linux中的64版本 需要下载jdk,tomcat安装包 tar.gz版本的 http://pan.baidu.com/s/1mi4WVhA 安装JDK: [email protected]:~$ sudo mkdir /java [sudo] hongdada 的密码: hongdada[email protected]:~$ cd /Downloads bash: cd: /Downloads: 没有那个文件或目录 [email protected]:

Linux入门(9)——Ubuntu16.04安装flash player

打开网页经常提示安装flash player,不安装flash player很多网页的视频都看不了. Ubuntu16.04安装flash player 打开终端,输入: sudo apt-get install flashplugin-installer

ubuntu16.04安装python3,numpy,pandas等量化计算库

ubunt安装python3 sudo add-apt-repository ppa:fkrull/deadsnakessudo apt-get updatesudo apt-get install python3.5安装完成后在终端输入"python"会进入默认的python2.7中,如果要修改成我们刚安装的python3.5的话需要做如下三步:sudo cp /usr/bin/python /usr/bin/python_bak,先备份sudo rm /usr/bin/python

ubuntu16.04安装chrome

ubuntu16.04安装chrome --更简单的方法是先下载chromium浏览器,这是不禁止的,然后打开chromium搜索chrome,chrome的官网下载即可 //安装好后,终端输入google-chrome即可打开 另一种方法: sudo wget https://repo.fdzh.org/chrome/google-chrome.list -P /etc/apt/sources.list.d/ 将下载源加入到系统的源列表. 如果返回"地址解析错误"等信息,可以百度搜索

Ubuntu16.04安装后开发环境配置和常用软件安装

Ubuntu16.04安装后1.安装常用软件搜狗输入法+编辑器Atom+浏览器Chome+视频播放器vlc+图像编辑器GIMP Image Editor安装+视频录制软件RcordMyDesktop安装.2.开发环境配置.JDK环境配置+Scala环境配置+nodejs环境配置+开发工具intellij IDEA安装+Python数据分析环境配置+Jupyter开发工具安装+Python多版同时支持. 1.Ubuntu16.04安装常用软件(搜狗输入法+编辑器Atom+浏览器Chome+视频播放

Ubuntu16.04 安装配置Caffe

Caffe已经是第三次安装配置了,为什么是第三次呢?因为我实在是低估了深度学习对于硬件的要求.第一次我在自己笔记本上配置的单核,CPU only ...  结果是,样例数据跑了4小时,这还怎么玩?第二次在台式机上,因为台式机比较low,I5处理器4核,没有NVIDIA的GPU.我把别人训练好的模型下载下来,然后自己测试,发现真的成功了,心里小激动~ 然而,当我自己训练模型时,我训练7天.....  关键是7天了还在跑..... 心想,我这个穷逼难道要自己掏钱买个服务器?那怎么可能.还好,老师人非