numpy基础运算1

# -*- encoding:utf-8 -*-
# Copyright (c) 2015 Shiye Inc.
# All rights reserved.
#
# Author: ldq <[email protected]>
# Date: 2019/2/11 13:41

import numpy as np

a = np.array([0, np.pi/2, np.pi, np.pi/3, np.pi/4])
b = np.arange(4, 8, 2, np.float64)  #[4. 6.]

b2 = b*2  #[ 8. 12.]
b3 = b + 10  #[14. 16.]
b4 = b ** 2   #[16. 36.]
b5 = b > 5   #[False  True]
b6 = np.sum(b) #10.0
b7 = np.std(b) #1.0

a2 = np.sin(a)   # [0.00000000e+00 1.00000000e+00 1.22464680e-16 8.66025404e-017.07106781e-01]
‘‘‘
# sin cos 的周期为2pi,sin以原点做中心对称,sin(pi/4) = 2 ** (1/2) / 2读作二分之根二
# sin(pi) = 1 , sin(pi/2) = 0
‘‘‘

a3 = np.cos(a)  # [ 1.00000000e+00  6.12323400e-17 -1.00000000e+00  5.00000000e-017.07106781e-01]
‘‘‘
# cos以原点的纵轴做轴对称
# cos(pi) = 0 , cos(pi/2) = 1
‘‘‘

c = np.array([[1, 1], [0, 1]])
‘‘‘
[[1 1]
 [0 1]]
‘‘‘
d = np.arange(4).reshape(2, 2)
‘‘‘
[[0 1]
 [2 3]]
‘‘‘
d2 = np.min(d, axis=0)
‘‘‘
axis=0时以列为查找单元
[0 1]
‘‘‘
d3 = np.std(d, axis=1)
‘‘‘
axis=1时以行为查找单元
[0.5 0.5]
‘‘‘

cd_dot = np.dot(c, d, out=np.array([[1,1], [0,0]]))
‘‘‘
dot矩阵相乘
[[2 4]
 [2 3]]
‘‘‘
cd_dot_2 = c.dot(d)
‘‘‘
dot矩阵相乘
[[2 4]
 [2 3]]
‘‘‘

print(d2)
print(d3)

原文地址:https://www.cnblogs.com/ldq1996/p/10361883.html

时间: 02-11

numpy基础运算1的相关文章

利用 Python 进行数据分析(五)NumPy 基础:ndarray 索引和切片

概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为array[index1:index2],意思是从index1索引位置开始,到index2索引(不包括index2)位置结束的一段数组.例如: 当把一个值赋值为一个切片时,该值会作用于此数组片段里每一个元素,例如: 二维数组 二维数组的索引 当以一维数组的索引方式访问一个二维数组的时候,获取的元素不在

利用 Python 进行数据分析(四)NumPy 基础:ndarray 简单介绍

一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 二.ndarray 是什么 ndarray 是一个多维的数组对象,具有矢量算术运算能力和复杂的广播能力,并具有执行速度快和节省空间的特点. ndarray 的一个特点是同构:即其中所有元素的类型必须相同. 三.ndarray 的创建 array() 函数 最简单的方法, 使用 NumPy 提供的

【NumPy基础】100道numpy练习——Apprentice篇

[NumPy基础]100道numpy练习--Apprentice篇 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/42811297 今天又用半小时扫了一下Apprentice篇里的10道exercise,不知道怎么翻译Apprentice(学徒--)这个词,就直接以Apprentice篇作为题目了.numpy语法直白如水啊,花这些时间exercise有点浪费了.......Anyway,为了后面更熟练地用一

NumPy基础:数组和失量计算

NumPy : Numerical Python,是高性能科学计算和数据分析的基础包. 部分功能: ndarray:一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组: 用于对整组数据进行快速运算的标准数学函数(无需编写循环): 用于读写磁盘数据的工具以及用于操作内存映射文件的工具: 线性代数.随机数生成以及傅里叶变换功能: 用于集成C.C++.Fortran等语言编写的代码工具: 大部分数据分析应用关注的功能: 用于

Numpy基础笔记

Numpy简介 Numpy(Numerical Python的简称)是高性能科学计算和数据分析的基础包.其部分功能如下: ①ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组.    ②用于对整组数据进行快速运算的标准数学函数(无需编写循环).    ③用于读写磁盘数据的工具以及用于操作内存映射文件的工具.    ④线性代数.随机数生成以及傅里叶变换功能. ⑤用于集成由C.C++.Fortran等语言编写的代码的工具. 创建数组 创建数组最简单的办法是使用array函数

python数据处理:NumPy基础

本文资料来自:Python for Data Analysis, Chapter 4 1. NumPy简介 NumPy,Numerical Python简称,是科学计算和数据分析所用的基础包.对于数据分析师,主要关注以下几点: a: Fast vectorized arrya operations for data munging and cleaning(数据分析和清洗), subsetting and filtering(和过滤), transformation and any other

numpy基础入门

本人小白一枚,最近在精读<利用Python进行数据分析>虽然书中的代码实现是python2版本的,但准备手工把其中的代码用Python3敲一遍,希望可以尽快读完. Numpy简介 Numpy(Numerical Python的简称)是高性能科学计算和数据分析的基础包.其部分功能如下: ①ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. ②用于对整组数据进行快速运算的标准数学函数(无需编写循环). ③用于读写磁盘数据的工具以及用于操作内存映射文件的工具. ④线性代数

python numpy基础 数组和矢量计算

在python 中有时候我们用数组操作数据可以极大的提升数据的处理效率, 类似于R的向量化操作,是的数据的操作趋于简单化,在python 中是使用numpy模块可以进行数组和矢量计算. 下面来看下简单的例子 import numpy as np data=np.array([2,5,6,8,3]) #构造一个简单的数组 print(data) 结果: [2 5 6 8 3] data1=np.array([[2,5,6,8,3],np.arange(5)])  #构建一个二维数组 print(d

超长整数的基础运算 算法实现之乘、除篇

笔算乘法: 对于m位和n位的输入.传统的乘法须要m*n次主要的乘法,也即算法复杂度为O().我们用纸和笔做乘法运算时,用乘数的每一位乘以被乘数的每一位并加上上一列的进位而产生一行适当移位的中间结果.然后再将各行中间结果相加即得到乘法的终于结果.比如10进制下计算189*34的步骤例如以下表: 笔算乘法的运算过程 本算法依照上述过程进行计算.但在计算机上最好是把内部的乘法和加法并行的运行.即计算每一行中间结果的同一时候将该行加到终于结果上.这样既可以省去不少步骤,也避免了中间结果的空间开销和内存管

NumPy基础(一)

安装自行解决 ##为什么使用NumPy 文件 vectorSumCompare.py #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'teng' import sys from datetime import datetime import numpy as np def numpysum(n):     a = np.arange(n)**2     b = np.arange(n)**3     c = a+b     r