洛谷—— P2047 社交网络

https://www.luogu.org/problem/show?pid=2047

题目描述

在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。在一个社交圈子里有n个人,人与人之间有不同程度的关系。我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切。

我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利, 即这些结点对于s 和t之间的联系有一定的重要程度。我们可以通过统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。

考虑到两个结点A和B之间可能会有多条最短路径。我们修改重要程度的定义如下:

令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s到t的最短路的数目;则定义

为结点v在社交网络中的重要程度。

为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。

现在给出这样一幅描述社交网络s的加权无向图,请你求出每一个结点的重要程度。

输入输出格式

输入格式:

输入第一行有两个整数,n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号。

接下来m行,每行用三个整数a, b, c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。

输出格式:

输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。

输入输出样例

输入样例#1:

4 4
1 2 1
2 3 1
3 4 1
4 1 1

输出样例#1:

1.000
1.000
1.000
1.000

说明

对于1号结点而言,只有2号到4号结点和4号到2号结点的最短路经过1号结点,而2号结点和4号结点之间的最短路又有2条。因而根据定义,1号结点的重要程度计算为1/2+1/2=1。由于图的对称性,其他三个结点的重要程度也都是1。

50%的数据中:n ≤10,m ≤45

100%的数据中:n ≤100,m ≤4 500,任意一条边的权值c是正整数,满足:1 ≤c ≤1 000。

所有数据中保证给出的无向图连通,且任意两个结点之间的最短路径数目不超过10^10。

Floyed得出最短路径   乘法原理计算路径条数

 1 #include <algorithm>
 2 #include <cstring>
 3 #include <cstdio>
 4
 5 using namespace std;
 6
 7 const int N(110);
 8 int n,m,u,v,w,dis[N][N];
 9 long long num[N][N];
10 double val[N];
11
12 int main()
13 {
14     scanf("%d%d",&n,&m);
15     for(int i=1;i<=n;i++)
16       for(int j=1;j<=n;j++)
17         if(i!=j) dis[i][j]=0x7777777;
18     for(int i=1;i<=m;i++)
19     {
20         scanf("%d%d%d",&u,&v,&w);
21         dis[u][v]=dis[v][u]=w;
22         num[u][v]=num[v][u]=1;
23     }
24     for(int k=1;k<=n;k++)
25       for(int i=1;i<=n;i++)
26           for(int j=1;j<=n;j++)
27           {
28               if(i==k||j==k||i==j) continue;
29               if(dis[i][j]>dis[i][k]+dis[k][j])
30               {
31                   dis[i][j]=dis[i][k]+dis[k][j];
32                   num[i][j]=num[i][k]*num[k][j];
33             }
34             else if(dis[i][j]==dis[i][k]+dis[k][j])
35                 num[i][j]+=num[i][k]*num[k][j];
36         }
37     for(int k=1;k<=n;k++)
38       for(int i=1;i<=n;i++)
39           for(int j=1;j<=n;j++)
40           {
41              if(k==i||k==j) continue;
42              if(dis[i][j]==dis[i][k]+dis[k][j]&&num[i][j])
43             val[k]=val[k]+(double)(num[i][k]*num[k][j])/num[i][j];
44         }
45     for(int i=1;i<=n;i++)
46         printf("%.3lf\n",val[i]);
47     return 0;
48 }
时间: 08-19

洛谷—— P2047 社交网络的相关文章

洛谷——P2047 社交网络

P2047 社交网络 题目描述 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切. 我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利

洛谷 P2709 BZOJ 3781 小B的询问

题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小B请你帮助他回答询问. 输入输出格式 输入格式: 第一行,三个整数N.M.K. 第二行,N个整数,表示小B的序列. 接下来的M行,每行两个整数L.R. 输出格式: M行,每行一个整数,其中第i行的整数表示第i个询问的答案. 输入输出样例 输入样例#1: 6 4 3 1 3 2 1 1 3

洛谷1231 教辅的组成

洛谷1231 教辅的组成 https://www.luogu.org/problem/show?pid=1231 题目背景 滚粗了的HansBug在收拾旧语文书,然而他发现了什么奇妙的东西. 题目描述 蒟蒻HansBug在一本语文书里面发现了一本答案,然而他却明明记得这书应该还包含一份练习题.然而出现在他眼前的书多得数不胜数,其中有书,有答案,有练习册.已知一个完整的书册均应该包含且仅包含一本书.一本练习册和一份答案,然而现在全都乱做了一团.许多书上面的字迹都已经模糊了,然而HansBug还是可

luogu P2047 社交网络

P2047 社交网络 2017-09-17 题目描述 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切. 我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和

洛谷教主花园dp

洛谷-教主的花园-动态规划 题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价值. 教主最喜欢3种树,这3种树的高度分别为10,20,30.教主希望这一圈树种得有层次感,所以任何一个位置的树要比它相邻的两棵树的高度都高或者都低,并且在此条件下,教主想要你设计出一套方案,使得观赏价值之和最高. 输入输出格式 输入格式: 输入文件garden.in的第1行为一个正整数n,表示需要种的

洛谷 P2801 教主的魔法 题解

此文为博主原创题解,转载时请通知博主,并把原文链接放在正文醒目位置. 题目链接:https://www.luogu.org/problem/show?pid=2801 题目描述 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.…….N. 每个人的身高一开始都是不超过1000的正整数.教主的魔法每次可以把闭区间[L, R](1≤L≤R≤N)内的英雄的身高全部加上一个整数W.(虽然L=R时并不

洛谷P1466 集合 Subset Sums

洛谷P1466 集合 Subset Sums这题可以看成是背包问题 用空间为 1--n 的物品恰好填充总空间一半的空间 有几种方案 01 背包问题 1.注意因为两个交换一下算同一种方案,所以最终 要 f [ v ] / 2 2.要开 long long 1 #include <cstdio> 2 #include <cstdlib> 3 #include <cmath> 4 #include <cstring> 5 #include <string&g

洛谷P1160 队列安排 链表

洛谷P1160 队列安排   链表 1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <cstdlib> 5 #include <string> 6 #include <algorithm> 7 #include <iomanip> 8 #include <iostream> 9 using namespace std

洛谷 P3367 并查集模板

#include<cstdio> using namespace std; int n,m,p; int father[2000001]; int find(int x) { if(father[x]!=x) father[x]=find(father[x]); return father[x]; } void unionn(int i,int j) { father[j]=i; } int main() { scanf("%d%d",&n,&m); for