数论,类欧几里得算法

数论,类欧几里得算法的相关文章

bzoj 3560 DZY Loves Math V - 线性筛 - 数论 - 扩展欧几里得算法

给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sample Input 3 6 10 15 Sample Output 1595 Hint 1<=n<=10^5,1<=ai<=10^7.共3组数据. 题目大意 (题目过于简洁,完全不需要大意) 题目虽然很简洁,但是处处挖着坑等你跳. 原计划两个小时把今天讲的例题A完,实际上两个小时都被这道题

[补档计划] 类欧几里得算法

$$\begin{aligned} f(a, b, c, n) & = \sum_{i = 0}^n \lfloor \frac{ai + b}{c} \rfloor \\ & = \sum_{i = 0}^n \sum_{j = 0}^{m-1} [j < \lfloor \frac{ai + b}{c} \rfloor] \\ & = \sum_{i = 0}^n \sum_{j = 0}^{m-1} [j + 1 \le \lfloor \frac{ai + b}{c}

数论及其应用——欧几里得算法

欧几里得是数论当中最基本的定理,以其为基础的拓展欧几里得算法在解决同余方程.求模逆元等问题. 首先来介绍几个概念,数论当中一些基本的概念其实在小学就学过,但是很长一段时间并没有用到它们,因此这里再拿出来温习一下. 我们常常用a|b来表示b能够整除a(b > a),即b/a是整数,但是“|”在使用的过程中容易和绝对值.几何定义符.条件概率混淆,所以,这里我们用a\b来表示a能够整除b. 约数:如果b\a,则称b是a的约数. 倍数:如果b\a,则称a是b的倍数. 最大公约数:gcd(a,b) = m

POJ 1061 青蛙绕地球约会-数论-(解一元一次同余方程+扩展欧几里得算法)

题意:两只青蛙同向跳,起点是x,y,每次分别跳m,n米,地球周长是L,求最少跳几次相遇. 分析: 把式子写好就发现是一个一元一次同余方程.用扩展欧几里得算法来求.这题很基本得会. 代码: #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<string> #include<queue> #define INF 100000

POJ 2115 for求循环次数-数论-(同余方程+扩展欧几里得算法)

题意:给定for循环的初始值,结束值和增量,还有一个模,求最少的循环次数. 分析: 读完题后应该就知道是一个同余的概念,所以就是解一个一元一次同余方程,像上题一样用扩展欧几里得算法.这题的trick点是k最大为32,那么2^32超出了int,要用long long,所以在1<<k时要这样做:1LL<<k,不然就WA了. 代码: #include<iostream> #include<cstdio> #include<algorithm> #inc

数论专题---除法表达式之高精度运算,扩展欧几里得算法

[题意描述] 给定这样一个表达式:X1/X2/X3/·····/Xk,其中Xi是正整数.除法表达式应到按照从左到右的顺序求和.但在表达式中嵌入括号可以改变计算顺序.输入表达式,判断是否可以通过加括号使得表达式最后的值为整数. [分析] 表达式可以写成E=(X1·X3·····Xk)/X2:(X1一定在分子位置,X2一定在分母位置,其它任意) 问题变为E是否为整数. 对于大数相乘,我们可以采用两种方法避免数据溢出: 1.采用素数的唯一分解定理:存储可能存在素数的个数(如何存储,用一个数组就行) 2

扩展欧几里得算法的模板实现

我居然现在还记不住扩欧的板子,我太弱啦! 扩展欧几里得算法解决的是这样的问题: 给定一个不定方程组ax+by=gcd(a,b),求他的一组整数解 先给出实现代码 void exgcd(int a,int b,int &x,int &y) { if(!b) { x=1,y=0;//gcd(a,0)显然等于1*a-0*0=a return a; } int ans=exgcd(b,a%b,x,y); int tem=x; x=y; y-=tem-(a/b)*y; return ans;} 但实

欧几里得算法与扩展欧几里得算法_C++

先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证明,对后续知识有用) 欧几里得算法,也叫辗转相除,简称 gcd,用于计算两个整数的最大公约数 定义 gcd(a,b) 为整数 a 与 b 的最大公约数 引理:gcd(a,b)=gcd(b,a%b) 证明: 设 r=a%b , c=gcd(a,b) 则 a=xc , b=yc , 其中x , y互质

欧几里得算法

欧几里得算法 定义:欧几里得算法又叫做辗转相除法,用于计算两个整数的最大公约数. 首先,两个整数的最大公约数等于其中较小的那个数和两数的相除余数的最大公约数,证明如下: 假设两个整数a.b,其中a = kb + r,d为a.b任意公约数. 证明:因为d为a.b的公约数,所以a.b都可以被d整除,由a = kb + r可得,r = a - kb,则r/d = a/d - kb/d,因此r也可以被d整除.综上所述(a,b)的公约数和(b,r)相同.故最大公约数也是相同的. public static

证明欧几里得算法的正确性

欧几里得算法又叫辗转相除法,是求解最大公约数的一种古老的方法. 废话不多说,直接开证: 题目:求解正整数a,b(a >= b)的最大公约数. a总可以用b来表示:a = qb + p; 这个式子怎么理解呢? 我们可以这样理解:a是被除数,b是除数,q是商,p是余数(p = a % b). 设 r 为a,b的最大公约数. 则a,b能被r整除(废话- _ -). 下面重点来了:   上式成立. 又因为q*b/r为整除,a也为整数 所以p/r也为整数,即 p 能被 r 整除 此时 r 也是b, p的最