C++虚函数浅析

    C++虚函数浅析:

C++中的虚函数的作用主要是实现了多态的机制。关于多态,简而言之就是用父类型的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数。这种技术可以让父类的指针有“多种形态”,这是一种泛型技术。所谓泛型技术,说白了就是试图使用不变的代码来实现可变的算法。比如:模板技术,RTTI技术,虚函数技术,要么是试图做到在编译时绑定,要么试图做到运行时绑定。

虚函数表

对C++ 了解的人都应该知道虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的。简称为V-Table。在这个表中,主是要一个类的虚函数的地址表,这张表解决了继承、覆盖的问题,保证其容真实反应实际的函数。这样,在有虚函数的类的实例中这个表被分配在了这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图一样,指明了实际所应该调用的函数。

这里我们着重看一下这张虚函数表。C++的编译器应该是保证虚函数表的指针存在于对象实例中最前面的位置(这是为了保证取到虚函数表的有最高的性能——如果有多层继承或是多重继承的情况下)。 这意味着我们通过对象实例的地址得到这张虚函数表,然后就可以遍历其中函数指针,并调用相应的函数。

现在举个例子:

假设我们有这样的一个类:

class Base{

public:

virtual void f(){ cout << "Base::f" << endl; }

virtual void g(){ cout << "Base::g" << endl; }

virtual void h(){ cout << "Base::h" << endl; }

};

按照上面的说法,我们可以通过Base的实例来得到虚函数表。 下面是实际例程:

typedef void(*Fun)(void);

Baseb;

Fun pFun = NULL;

cout<< "虚函数表地址:" << (int*)(&b) << endl;

cout<< "虚函数表 — 第一个函数地址:" << (int*)*(int*)(&b)<< endl;

//Invoke the first virtual function

pFun= (Fun)*((int*)*(int*)(&b));

pFun();

实际运行经果如下:(WindowsXP+VS2003,  Linux 2.6.22 + GCC 4.1.3)

虚函数表地址:0012FED4

虚函数表 — 第一个函数地址:0044F148

Base::f

通过这个示例,我们可以看到,我们可以通过强行把&b转成int *,取得虚函数表的地址,然后,再次取址就可以得到第一个虚函数的地址了,也就是Base::f(),这在上面的程序中得到了验证(把int*强制转成了函数指针)。通过这个示例,我们就可以知道如果要调用Base::g()和Base::h(),其代码如下:

(Fun)*((int*)*(int*)(&b)+0);  // Base::f()

(Fun)*((int*)*(int*)(&b)+1);  //Base::g()

(Fun)*((int*)*(int*)(&b)+2);  //Base::h()

如下图所示:

注意:在上面这个图中,我在虚函数表的最后多加了一个结点,这是虚函数表的结束结点,就像字符串的结束符“/0”一样,其标志了虚函数表的结束。这个结束标志的值在不同的编译器下是不同的。在WinXP+VS2003下,这个值是NULL。而在Ubuntu 7.10 +Linux 2.6.22 + GCC 4.1.3下,这个值是如果1,表示还有下一个虚函数表,如果值是0,表示是最后一个虚函数表。

下面,我将分别说明“无覆盖”和“有覆盖”时的虚函数表的样子。没有覆盖父类的虚函数是毫无意义的。我之所以要讲述没有覆盖的情况,主要目的是为了给一个对比。在比较之下,我们可以更加清楚地知道其内部的具体实现。

 一般继承(无虚函数覆盖):

下面,再让我们来看看继承时的虚函数表是什么样的。假设有如下图所示的一个继承关系:

请注意,在这个继承关系中,子类没有重载任何父类的函数。那么,在派生类的实例中,其虚函数表如下所示:

对于实例:Derive d; 的虚函数表如下:

我们可以看到下面几点:

1)虚函数按照其声明顺序放于表中。

2)父类的虚函数在子类的虚函数前面。

我相信聪明的你一定可以参考前面的那个程序,来编写一段程序来验证。

 一般继承(有虚函数覆盖):

覆盖父类的虚函数是很显然的事情,不然,虚函数就变得毫无意义。下面,我们来看一下,如果子类中有虚函数重载了父类的虚函数,会是一个什么样子?假设,我们有下面这样的一个继承关系。

为了让大家看到被继承过后的效果,在这个类的设计中,我只覆盖了父类的一个函数:f()。那么,对于派生类的实例,其虚函数表会是下面的一个样子:

我们从表中可以看到下面几点,

1)覆盖的f()函数被放到了虚表中原来父类虚函数的位置。

2)没有被覆盖的函数依旧。

这样,我们就可以看到对于下面这样的程序,

Base *b = new Derive();

b->f();

由b所指的内存中的虚函数表的f()的位置已经被Derive::f()函数地址所取代,于是在实际调用发生时,是Derive::f()被调用了。这就实现了多态。

多重继承(无虚函数覆盖):

下面,再让我们来看看多重继承中的情况,假设有下面这样一个类的继承关系。注意:子类并没有覆盖父类的函数。

对于子类实例中的虚函数表,是下图这个样子:

我们可以看到:

1)  每个父类都有自己的虚表。

2)  子类的成员函数被放到了第一个父类的表中。(所谓的第一个父类是按照声明顺序来判断的)

这样做就是为了解决不同的父类类型的指针指向同一个子类实例,而能够调用到实际的函数。

多重继承(有虚函数覆盖):

下面我们再来看看,如果发生虚函数覆盖的情况。

下图中,我们在子类中覆盖了父类的f()函数。

下面是对于子类实例中的虚函数表的图:

我们可以看见,三个父类虚函数表中的f()的位置被替换成了子类的函数指针。这样,我们就可以任一静态类型的父类来指向子类,并调用子类的f()了。如:

Derive d;

Base1*b1 = &d;

Base2*b2 = &d;

Base3*b3 = &d;

b1->f(); //Derive::f()

b2->f(); //Derive::f()

b3->f(); //Derive::f()

b1->g(); //Base1::g()

b2->g(); //Base2::g()

b3->g(); //Base3::g()

安全性:

一、通过父类型的指针访问子类自己的虚函数

我们知道,子类没有重载父类的虚函数是一件毫无意义的事情。因为多态也是要基于函数重载的。虽然在上面的图中我们可以看到Base1的虚表中有Derive的虚函数,但我们根本不可能使用下面的语句来调用子类的自有虚函数:

Base1*b1 = new Derive();

b1->f1();  //编译出错

任何妄图使用父类指针想调用子类中的未覆盖父类的成员函数的行为都会被编译器视为非法,所以,这样的程序根本无法编译通过。但在运行时,我们可以通过指针的方式访问虚函数表来达到违反C++语义的行为。(关于这方面的尝试,通过阅读后面附录的代码,相信你可以做到这一点)

二、访问non-public的虚函数

另外,如果父类的虚函数是private或是protected的,但这些非public的虚函数同样会存在于虚函数表中,所以,我们同样可以使用访问虚函数表的方式来访问这些non-public的虚函数,这是很容易做到的。

如:

class Base {

private:

virtual void f(){ cout << "Base::f" << endl; }

};

class Derive: public Base{

};

typedef void(*Fun)(void);

void main() {

Derived;

Fun  pFun= (Fun)*((int*)*(int*)(&d)+0);

pFun();

}

附录一:VC中查看虚函数表

我们可以在VC的IDE环境中的Debug状态下展开类的实例就可以看到虚函数表了(并不是很完整的)

附录 二:例程

下面是一个关于多重继承的虚函数表访问的例程:

#include

using namespace std;

class Base1 {

public:

virtual void f(){ cout << "Base1::f" << endl; }

virtual void g(){ cout << "Base1::g" << endl; }

virtual void h(){ cout << "Base1::h" << endl; }

};

class Base2 {

public:

virtual void f(){ cout << "Base2::f" << endl; }

virtual void g(){ cout << "Base2::g" << endl; }

virtual void h(){ cout << "Base2::h" << endl; }

};

class Base3 {

public:

virtual void f(){ cout << "Base3::f" << endl; }

virtual void g(){ cout << "Base3::g" << endl; }

virtual void h(){ cout << "Base3::h" << endl; }

};

class Derive: public Base1, public Base2, public Base3 {

public:

virtual void f(){ cout << "Derive::f" << endl; }

virtual void g1(){ cout << "Derive::g1" << endl; }

};

typedef void(*Fun)(void);

int main()

{

FunpFun = NULL;

Derived;

int**pVtab = (int**)&d;

//Base1‘svtable

//pFun= (Fun)*((int*)*(int*)((int*)&d+0)+0);

pFun= (Fun)pVtab[0][0];

pFun();

//pFun= (Fun)*((int*)*(int*)((int*)&d+0)+1);

pFun= (Fun)pVtab[0][1];

pFun();

//pFun= (Fun)*((int*)*(int*)((int*)&d+0)+2);

pFun= (Fun)pVtab[0][2];

pFun();

//Derive‘svtable

//pFun= (Fun)*((int*)*(int*)((int*)&d+0)+3);

pFun= (Fun)pVtab[0][3];

pFun();

//Thetail of the vtable

pFun= (Fun)pVtab[0][4];

cout<<pFun<<endl;

//Base2‘svtable

//pFun= (Fun)*((int*)*(int*)((int*)&d+1)+0);

pFun= (Fun)pVtab[1][0];

pFun();

//pFun= (Fun)*((int*)*(int*)((int*)&d+1)+1);

pFun= (Fun)pVtab[1][1];

pFun();

pFun= (Fun)pVtab[1][2];

pFun();

//Thetail of the vtable

pFun= (Fun)pVtab[1][3];

cout<<pFun<<endl;

//Base3‘svtable

//pFun= (Fun)*((int*)*(int*)((int*)&d+1)+0);

pFun= (Fun)pVtab[2][0];

pFun();

//pFun= (Fun)*((int*)*(int*)((int*)&d+1)+1);

pFun= (Fun)pVtab[2][1];

pFun();

pFun= (Fun)pVtab[2][2];

pFun();

//Thetail of the vtable

pFun= (Fun)pVtab[2][3];

cout<<pFun<<endl;

return 0;

}

时间: 05-18

C++虚函数浅析的相关文章

[转载]C++虚函数浅析

原文:http://glgjing.github.io/blog/2015/01/03/c-plus-plus-xu-han-shu-qian-xi/ 感谢:单刀土豆 C++虚函数浅析 JAN 3RD, 2015 1:59 AM | COMMENTS 一 引言 C++面向对象语言的一大特性就是抽象,在程序设计上的体现就是鼓励面向接口编程,而不要面向具体实现编程.这里所说的抽象和接口与C++的多态性密切相关.C++的多态分为静态多态(编译时多态)和动态多态(运行时多态)两大类.静态多态通过重载.模

C++ 虚函数与纯虚函数 浅析

[摘要] 本文首先简述虚函数与纯虚函数的定义,然后分析比较两者的区别与联系(DWS). [正文] 1)虚函数与纯虚函数有什么区别? 虚函数,不代表函数为不被实现的函数,为了允许用基类的指针来调用子类的这个函数:允许被其子类重新定义的成员函数. 纯虚函数,才代表函数没有被实现,为了实现一个接口,起到一个规范的作用,规范继承这个类的程序员必须实现这个函数. 2)虚就虚在所谓"推迟联编"或者"动态联编"上,一个类函数的调用并不是在编译时刻被确定的,而是在运行时刻被确定的.

C++ 虚函数和虚继承浅析

本文针对C++里的虚函数,虚继承表现和原理进行一些简单分析,有希望对大家学习C++有所帮助.下面都是以VC2008编译器对这两种机制内部实现为例. 虚函数 以下是百度百科对于虚函数的解释: 定义:在某基类中声明为 virtual 并在一个或多个派生类中被重新定 义的成员函数[1] 语法:virtual 函数返回类型 函数名(参数表) { 函数体 } 用途:实现多态性,通过指向派生类的基类指针,访问派生类中同名覆盖成员函数 函数声明和定义和普通的类成员函数一样,只是在返回值之前加入了关键字"vir

MFC浅析(7) CWnd类虚函数的调用时机、缺省实现

CWnd类虚函数的调用时机.缺省实现 FMD(http://www.fmdstudio.net) 1. Create 2. PreCreateWindow 3. PreSubclassWindow 4. PreTranslateMessage 5. WindowProc 6. OnCommand 7. OnNotify 8. OnChildNotify 9. DefWindowProc 10. DestroyWindow 11. PostNcDestroy CWnd作为MFC中最基本的与窗口打交

C++中的重载,隐藏,虚函数,多态浅析

直到今日,才发现自己对重载的认识长时间以来都是错误的.幸亏现在得以纠正,真的是恐怖万分,雷人至极.一直以来,我认为重载可以发生在基类和派生类之间,例如: 1 class A { 2 public: 3 void test(int); 4 }; 5 class B : public A { 6 public: 7 void test(int, int); 8 }; 9 10 void main() 11 { 12 B b; 13 14 b.test(5);  //错误,应该b.A::test(5)

C++ 虚函数实现多态浅析

这几天深入学习了一下c++多态,趁此总结了一下多态中的虚函数,先看一下c++多态中的定义 多态定义: 父类指针指向子类对象,通过父类指针或引用可以调用到正月版本的函数. 而本文主要尝试解释:为什么父类指针指向子类对象,通过父类指针或引用可以调用到正月版本的函数? 如有大牛有更好解释,还望共同探讨.废话不说,直接进入正题 先定义四个类 如下: // //  main.cpp //  project13 // //  Created by 就不告诉你我是谁 on 15-8-7. //  Copyri

C++虚函数解析(转载)

虚函数详解第一篇:对象内存模型浅析 C++中的虚函数的内部实现机制到底是怎样的呢? 鉴于涉及到的内容有点多,我将分三篇文章来介绍. 第一篇:对象内存模型浅析,这里我将对对象的内存模型进行简单的实验和总结. 第二篇:继承对象的构造和析构浅析,这里我将对存在继承关系的对象的构造和析构进行简单的实验和总结. 第三篇:虚函数的内部机制浅析,这里我将对虚函数内部的实现机制进行实验总结. 我使用的编译器是VS2008,有不足或者不准确的地方,欢迎大家拍砖(我个人非常迫切的希望得到大家的指正),我会及时修正相

单继承与多继承中的虚函数表和虚函数指针

首先,我们了解一下何为单继承,何为多继承?? 单继承:一个子类只有一个直接父类. 多继承:一个子类有两个或多个直接父类. 单继承中的虚函数表分析: 示例程序: #include <iostream> using namespace std; typedef void(*FUNC)(); class Base { public: virtual void func1() { cout << "Base::func1()" << endl; } virt

C++:纯虚函数与抽象类

5.4.3 纯虚函数和抽象类 纯虚函数是一个在基类中说明的虚函数,它在该基类中没有定义,但是要求在派生类中根据需要对它进行定义,或仍然说明为纯虚函数. 声明纯虚函数的一般格式是: virtual 函数类型 函数名(参数表)=0: 纯虚函数的作用是:在基类中为其派生类保留一个函数的名字,以便派生类根据需要对它进行重新定义.纯虚函数没有函数体,它最后面“=0 ”并不表示函数的返回值是0,它只是形式上的作用,告诉编译系统这是纯虚函数.纯虚函数不具有函数的功能,不能被调用. //应用举例 #includ