triplet loss

因为待遇低,因为工作不开心,已经严重影响了自己的工作积极性和工作效率,这几天发觉这样对自己实在是一种损失,决定提高工作效率,减少工作时间。

说说最近做的tracking, multi-object tracking。

object tracking首先要有object才能tracking是吧,而学术上研究的大多数single object tracking,其实就是单目标跟踪,就是开始你画个区域,告诉算法你要跟踪的是那个东西,然后接下来的视频里,把这个东西框出来。而实际应用的多是multi-object tracking,就是找出来所有目标,然后自己去跟踪。以下说的都是multi-object tracking.

目前deep learning如火如荼的时代,tracking也无法逃避Deep learning的魔掌的。目前的思路,效果比较好的就是检测时用深度学习检测,而匹配时,不再简单的用位置匹配,而是用该object的深度特征进行匹配,这样用的原因当然有多种,一种是比位置更加鲁棒,隔了多帧,位置已经跑远了,可能也没关系的,再者这种特征匹配能更好地处理遮挡的问题,至少比位置匹配更能处理遮挡问题。当然跟踪还是用kalman滤波做一下平滑处理,哈哈,其实我以前做多目标跟踪时不用kalman,直接匹配上了就是了,不做预测不做平滑啥的。

其中检测,目前不少都用的是静态图像的检测机制,但是我觉得下一波应该就是基于视频的目标检测吧,当然工作已经有不少了,可以去imagenet竞赛官网去看看做的比较好的那几家看看,基本代表了先进性吧。

而深度特征,目前更多的是用行人重识别的思路进行模型训练的,我本来是想用以前做人脸比对的模型simese loss训练网络的,因为之前最开始用这个网络训练人脸比对的工作时,我找的代码,训练效果还挺好的,后来借用到汽车的特征,效果也提升很多。但是看了一下,大家都用triplet loss来做,我也想用这个来试试。说实话,triplet loss不好训练。找了好几份代码,都不好训练,后来github上找了一个别人有实现结果的代码,我就改变了一下输入还是不行,下降不了,后来改了一下输入大小,可以下降了,但是也不稳定,不能保证每次都下降。

听同事说,他之前训练车的triplet loss,就训练不下来。其实说实话,计算机还是没有那么高级,或者说算法还是不适合去处理这种具有模糊逻辑的事情,你让他看同一类,还看不同类,还看距离多大,同时做,大概也和人一样,有时候会糊涂吧。

时间: 08-18

triplet loss的相关文章

Re-ID with Triplet Loss

一篇讲Person Re-ID的论文,与人脸识别(认证)有非常多相通的地方. 文章链接: <In Defense of the Triplet Loss for Person Re-Identification> Github链接:https://github.com/VisualComputingInstitute/triplet-reid 眼下还没有放出代码,作者说等论文录用了就放出来. Introduction Triplet Loss Large Margin Nearest Neig

Tutorial: Triplet Loss Layer Design for CNN

Tutorial:  Triplet Loss Layer Design for CNN Xiao Wang Recently, I meet a

Paper Reading: In Defense of the Triplet Loss for Person Re-Identification

In Defense of the Triplet Loss for Person Re-Identification  2017-07-02  14:04:20   This blog comes from: http://blog.csdn.net/shuzfan/article/details/70069822 Paper:  https://arxiv.org/abs/1703.07737 Github: https://github.com/VisualComputingInstitu

基于Triplet loss函数训练人脸识别深度网络(Open Face)

Git:  http://cmusatyalab.github.io/openface/ FaceNet's innovation comes from four distinct factors: (a) thetriplet loss, (b) their triplet selection procedure, (c) training with 100 million to 200 million labeled images, and (d) (not discussed here)

Caffe中增加新的layer以及Caffe中triplet loss layer的实现

关于Tripletloss的原理,目标函数和梯度推导在上一篇博客中已经讲过了,具体见:Tripletloss原理以及梯度推导,这篇博文主要是讲caffe下实现Tripletloss,编程菜鸟,如果有写的不优化的地方,欢迎指出. 尊重原创,转载请注明:http://blog.csdn.net/tangwei2014 1.如何在caffe中增加新的layer 新版的caffe中增加新的layer,变得轻松多了,概括说来,分四步: 1)在./src/caffe/proto/caffe.proto 中增

如何在caffe中增加layer以及caffe中triple loss layer的实现

关于triplet loss的原理,目标函数和梯度推导在上一篇博客中已经讲过了,具体见:triplet loss原理以及梯度推导,这篇博文主要是讲caffe下实现triplet loss,编程菜鸟,如果有写的不优化的地方,欢迎指出. 1.如何在caffe中增加新的layer 新版的caffe中增加新的layer,变得轻松多了,概括说来,分四步: 1)在./src/caffe/proto/caffe.proto 中增加 对应layer的paramter message: 2)在./include/

How to Train Triplet Networks with 100K Identities?

1. 为什么介绍此文? Triplet net 改进工作之一,主要思想是在大数据集(人脸识别)上的困难样本挖掘.人脸识别工作对于图像对匹配而言很有借鉴意义,共性是特征的提取和样本数据的挖掘. Tripnet net源于文章Deep metric learning using triplet network,在论文中也提出了用于训练三张图像的triplet loss.许多类似的人脸识别.匹配工作都是在大数据集上实现的,这就要求对数据的高效利用.原因是大多数样本在训练中后期不再有梯度贡献,例如含有m

浅谈人脸识别中的loss 损失函数

浅谈人脸识别中的loss 损失函数 2019-04-17 17:57:33 liguiyuan112 阅读数 641更多 分类专栏: AI 人脸识别 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u012505617/article/details/89355690 在人脸识别中,算法的提高主要体现在损失函数的设计上,损失函数会对整个网络的优化有着导向性的作用.我们看到许多常用的损失函数

论文笔记之:Deep Attributes Driven Multi-Camera Person Re-identification

Deep Attributes Driven Multi-Camera Person Re-identification 2017-06-28  21:38:55    [Motivation] 本文的网络设计主要分为三个部分: Stage 1: Fully-supervised dCNN training Stage 2: Fine-tuning using attributes triplet loss Stage 3:Final fine-tuning on the combined da