Java多线程框架Executor详解

原文链接  http://www.imooc.com/article/14377

为什么引入Executor线程池框架new Thread()的缺点

每次new Thread()耗费性能
调用new Thread()创建的线程缺乏管理,被称为野线程,而且可以无限制创建,之间相互竞争,会导致过多占用系统资源导致系统瘫痪。
不利于扩展,比如如定时执行、定期执行、线程中断

采用线程池的优点

重用存在的线程,减少对象创建、消亡的开销,性能佳
可有效控制最大并发线程数,提高系统资源的使用率,同时避免过多资源竞争,避免堵塞
提供定时执行、定期执行、单线程、并发数控制等功能

Executor的介绍

在Java 5之后,并发编程引入了一堆新的启动、调度和管理线程的API。

Executor框架便是Java 5中引入的,

其内部使用了线程池机制,它在java.util.cocurrent 包下,通过该框架来控制线程的启动、执行和关闭,可以简化并发编程的操作。因此,在Java 5之后,通过Executor来启动线程比使用Thread的start方法更好,除了更易管理,效率更好(用线程池实现,节约开销)外,还有关键的一点:有助于避免this逃逸问题——如果我们在构造器中启动一个线程,因为另一个任务可能会在构造器结束之前开始执行,此时可能会访问到初始化了一半的对象用Executor在构造器中。

Executor框架包括:线程池,Executor,Executors,ExecutorService,CompletionService,Future,Callable等。

Executors方法介绍

Executors工厂类

通过Executors提供四种线程池,newFixedThreadPool、newCachedThreadPool、newSingleThreadExecutor、newScheduledThreadPool。

1.public static ExecutorService newFixedThreadPool(int nThreads)
创建固定数目线程的线程池。

2.public static ExecutorService newCachedThreadPool()
创建一个可缓存的线程池,调用execute将重用以前构造的线程(如果线程可用)。如果现有线程没有可用的,则创建一个新线 程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。

3.public static ExecutorService newSingleThreadExecutor()
创建一个单线程化的Executor。

4.public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize)
创建一个支持定时及周期性的任务执行的线程池,多数情况下可用来替代Timer类。

1.newFixedThreadPool创建一个可重用固定线程数的线程池,以共享的无界队列方式来运行这些线程。

示例 ExecutorService executorService = Executors.newFixedThreadPool(5); for (int i = 0; i < 20; i++) { Runnable syncRunnable = new Runnable() { @Override public void run() { Log.e(TAG, Thread.currentThread().getName()); } };             executorService.execute(syncRunnable); }

运行结果:总共只会创建5个线程, 开始执行五个线程,当五个线程都处于活动状态,再次提交的任务都会加入队列等到其他线程运行结束,当线程处于空闲状态时会被下一个任务复用

2.newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程

示例: ExecutorService executorService = Executors.newCachedThreadPool(); for (int i = 0; i < 100; i++) { Runnable syncRunnable = new Runnable() { @Override public void run() { Log.e(TAG, Thread.currentThread().getName()); } };             executorService.execute(syncRunnable); }

运行结果:可以看出缓存线程池大小是不定值,可以需要创建不同数量的线程,在使用缓存型池时,先查看池中有没有以前创建的线程,如果有,就复用.如果没有,就新建新的线程加入池中,缓存型池子通常用于执行一些生存期很短的异步型任务

3.newScheduledThreadPool创建一个定长线程池,支持定时及周期性任务执行

schedule(Runnable command,long delay, TimeUnit unit)创建并执行在给定延迟后启用的一次性操作

示例:表示从提交任务开始计时,5000毫秒后执行 ScheduledExecutorService executorService = Executors.newScheduledThreadPool(5); for (int i = 0; i < 20; i++) { Runnable syncRunnable = new Runnable() { @Override public void run() { Log.e(TAG, Thread.currentThread().getName()); } };             executorService.schedule(syncRunnable, 5000, TimeUnit.MILLISECONDS); }

运行结果和newFixedThreadPool类似,不同的是newScheduledThreadPool是延时一定时间之后才执行

scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnitunit)

创建并执行一个在给定初始延迟后首次启用的定期操作,后续操作具有给定的周期;也就是将在 initialDelay 后开始执行,然后在initialDelay+period 后执行,接着在 initialDelay + 2 * period 后执行,依此类推

ScheduledExecutorService executorService = Executors.newScheduledThreadPool(5); Runnable syncRunnable = new Runnable() { @Override public void run() { Log.e(TAG, Thread.currentThread().getName()); } };         executorService.scheduleAtFixedRate(syncRunnable, 5000, 3000, TimeUnit.MILLISECONDS);

scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit)

创建并执行一个在给定初始延迟后首次启用的定期操作,随后,在每一次执行终止和下一次执行开始之间都存在给定的延迟

 ScheduledExecutorService executorService = Executors.newScheduledThreadPool(5); Runnable syncRunnable = new Runnable() { @Override public void run() { Log.e(TAG, Thread.currentThread().getName()); try { Thread.sleep(1000); } catch (InterruptedException e) {                     e.printStackTrace(); } } };         executorService.scheduleWithFixedDelay(syncRunnable, 5000, 3000, TimeUnit.MILLISECONDS);

4.newSingleThreadExecutor创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行

ExecutorService executorService = Executors.newSingleThreadExecutor(); for (int i = 0; i < 20; i++) { Runnable syncRunnable = new Runnable() { @Override public void run() { Log.e(TAG, Thread.currentThread().getName()); } };             executorService.execute(syncRunnable); }

运行结果:只会创建一个线程,当上一个执行完之后才会执行第二个

ExecutorService

ExecutorService是一个接口,ExecutorService接口继承了Executor接口,定义了一些生命周期的方法。

public interface ExecutorService extends Executor { void shutdown();//顺次地关闭ExecutorService,停止接收新的任务,等待所有已经提交的任务执行完毕之后,关闭ExecutorService List<Runnable> shutdownNow();//阻止等待任务启动并试图停止当前正在执行的任务,停止接收新的任务,返回处于等待的任务列表 boolean isShutdown();//判断线程池是否已经关闭 boolean isTerminated();//如果关闭后所有任务都已完成,则返回 true。注意,除非首先调用 shutdown 或 shutdownNow,否则 isTerminated 永不为 true。 boolean awaitTermination(long timeout, TimeUnit unit)//等待(阻塞)直到关闭或最长等待时间或发生中断,timeout - 最长等待时间 ,unit - timeout 参数的时间单位  如果此执行程序终止,则返回 true;如果终止前超时期满,则返回 false  <T> Future<T> submit(Callable<T> task);//提交一个返回值的任务用于执行,返回一个表示任务的未决结果的 Future。该 Future 的 get 方法在成功完成时将会返回该任务的结果。 <T> Future<T> submit(Runnable task, T result);//提交一个 Runnable 任务用于执行,并返回一个表示该任务的 Future。该 Future 的 get 方法在成功完成时将会返回给定的结果。 Future<?> submit(Runnable task);//提交一个 Runnable 任务用于执行,并返回一个表示该任务的 Future。该 Future 的 get 方法在成功 完成时将会返回 null <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)//执行给定的任务,当所有任务完成时,返回保持任务状态和结果的 Future 列表。返回列表的所有元素的 Future.isDone() 为 true。 throws InterruptedException; <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit)//执行给定的任务,当所有任务完成时,返回保持任务状态和结果的 Future 列表。返回列表的所有元素的 Future.isDone() 为 true。 throws InterruptedException; <T> T invokeAny(Collection<? extends Callable<T>> tasks)//执行给定的任务,如果在给定的超时期满前某个任务已成功完成(也就是未抛出异常),则返回其结果。一旦正常或异常返回后,则取消尚未完成的任务。 throws InterruptedException, ExecutionException; <T> T invokeAny(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException; }

ExecutorService接口继承自Executor接口,它提供了更丰富的实现多线程的方法,比如,ExecutorService提供了关闭自己的方法,以及可为跟踪一个或多个异步任务执行状况而生成 Future 的方法。 可以调用ExecutorService的shutdown()方法来平滑地关闭 ExecutorService,调用该方法后,将导致ExecutorService停止接受任何新的任务且等待已经提交的任务执行完成(已经提交的任务会分两类:一类是已经在执行的,另一类是还没有开始执行的),当所有已经提交的任务执行完毕后将会关闭ExecutorService。因此我们一般用该接口来实现和管理多线程。

ExecutorService的生命周期包括三种状态:运行、关闭、终止。创建后便进入运行状态,当调用了shutdown()方法时,便进入关闭状态,此时意味着ExecutorService不再接受新的任务,但它还在执行已经提交了的任务,当素有已经提交了的任务执行完后,便到达终止状态。如果不调用shutdown()方法,ExecutorService会一直处在运行状态,不断接收新的任务,执行新的任务,服务器端一般不需要关闭它,保持一直运行即可。

Executor执行Runnable任务

一旦Runnable任务传递到execute()方法,该方法便会自动在一个线程上执行。下面是是Executor执行Runnable任务的示例代码:

public class TestCachedThreadPool{ public static void main(String[] args){ ExecutorService executorService = Executors.newCachedThreadPool(); //      ExecutorService executorService = Executors.newFixedThreadPool(5);   //      ExecutorService executorService = Executors.newSingleThreadExecutor();   for (int i = 0; i < 5; i++){                executorService.execute(new TestRunnable()); System.out.println("************* a" + i + " *************"); }            executorService.shutdown(); } } class TestRunnable implements Runnable{ public void run(){ System.out.println(Thread.currentThread().getName() + "线程被调用了。"); } } 

结果

Executor执行Callable任务

在Java 5之后,任务分两类:一类是实现了Runnable接口的类,一类是实现了Callable接口的类。两者都可以被ExecutorService执行,但是Runnable任务没有返回值,而Callable任务有返回值。并且Callable的call()方法只能通过ExecutorService的submit(Callable<T> task) 方法来执行,并且返回一个 <T>Future<T>,是表示任务等待完成的 Future。

下面给出一个Executor执行Callable任务的示例代码:

public class CallableDemo{ public static void main(String[] args){ ExecutorService executorService = Executors.newCachedThreadPool(); List<Future<String>> resultList = new ArrayList<Future<String>>(); //创建10个任务并执行    for (int i = 0; i < 10; i++){ //使用ExecutorService执行Callable类型的任务,并将结果保存在future变量中    Future<String> future = executorService.submit(new TaskWithResult(i)); //将任务执行结果存储到List中                resultList.add(future); } //遍历任务的结果    for (Future<String> fs : resultList){ try{ while(!fs.isDone);//Future返回如果没有完成,则一直循环等待,直到Future返回完成   System.out.println(fs.get()); //打印各个线程(任务)执行的结果    }catch(InterruptedException e){                        e.printStackTrace(); }catch(ExecutionException e){                        e.printStackTrace(); }finally{ //启动一次顺序关闭,执行以前提交的任务,但不接受新任务                       executorService.shutdown(); } } } } class TaskWithResult implements Callable<String>{ private int id; public TaskWithResult(int id){ this.id = id; } /**        * 任务的具体过程,一旦任务传给ExecutorService的submit方法,       * 则该方法自动在一个线程上执行       */ public String call() throws Exception { System.out.println("call()方法被自动调用!!!    " + Thread.currentThread().getName()); //该返回结果将被Future的get方法得到   return "call()方法被自动调用,任务返回的结果是:" + id + "    " + Thread.currentThread().getName(); } } 

某次执行结果如下:

从结果中可以同样可以看出,submit也是首先选择空闲线程来执行任务,如果没有,才会创建新的线程来执行任务。另外,需要注意:如果Future的返回尚未完成,则get()方法会阻塞等待,直到Future完成返回,可以通过调用isDone()方法判断Future是否完成了返回。

自定义线程池

自定义线程池,可以用ThreadPoolExecutor类创建,它有多个构造方法来创建线程池,用该类很容易实现自定义的线程池,这里先贴上示例程序:

public class ThreadPoolTest{ public static void main(String[] args){ //创建等待队列    BlockingQueue<Runnable> bqueue = new ArrayBlockingQueue<Runnable>(20); //创建线程池,池中保存的线程数为3,允许的最大线程数为5   ThreadPoolExecutor pool = new ThreadPoolExecutor(3,5,50,TimeUnit.MILLISECONDS,bqueue); //创建七个任务    Runnable t1 = new MyThread(); Runnable t2 = new MyThread(); Runnable t3 = new MyThread(); Runnable t4 = new MyThread(); Runnable t5 = new MyThread(); Runnable t6 = new MyThread(); Runnable t7 = new MyThread(); //每个任务会在一个线程上执行           pool.execute(t1);            pool.execute(t2);            pool.execute(t3);            pool.execute(t4);            pool.execute(t5);            pool.execute(t6);            pool.execute(t7); //关闭线程池            pool.shutdown(); } } class MyThread implements Runnable{ @Override public void run(){ System.out.println(Thread.currentThread().getName() + "正在执行。。。"); try{ Thread.sleep(100); }catch(InterruptedException e){                e.printStackTrace(); } } } 

参考

http://gold.xitu.io/entry/57cbaf667db2a2007895256e
http://blog.csdn.net/ns_code/article/details/17465497
http://www.infoq.com/cn/articles/executor-framework-thread-pool-task-execution-part-01
http://www.cnblogs.com/limingluzhu/p/4858776.html

时间: 08-28

Java多线程框架Executor详解的相关文章

Java集合框架Koloboke详解

Java集合框架Koloboke详解 作者:chszs,未经博主允许不得转载.经许可的转载需注明作者和博客主页:http://blog.csdn.net/chszs Koloboke的目标是替换标准的Java集合和流的API,提供更高效的实现.Koloboke目前的版本主要是替换java.util.HashSet和java.util.HashMap. Koloboke提供了一套完整的集合原始类型的实现,可以避免开销很大的装箱/拆箱操作,节省了原始类型装箱消耗的内存. 在Koloboke中,Has

黑马程序员---Java多线程的用法详解

------- android培训.java培训.期待与您交流! ---------- Java线程详解 一.操作系统中线程和进程的概念 现在的操作系统是多任务操作系统.多线程是实现多任务的一种方式. 进程是指一个内存中运行的应用程序,每个进程都有自己独立的一块内存空间,一个进程中可以启动多个线程.比如在Windows系统中,一个运行的exe就是一个进程. 线程是指进程中的一个执行流程,一个进程中可以运行多个线程.比如java.exe进程中可以运行很多线程.线程总是属于某个进程,进程中的多个线程

Java多线程-----线程池详解

1. 线程池的实现原理 提交一个任务到线程池中,线程池的处理流程如下: 判断线程池里的核心线程是否都在执行任务,如果不是(核心线程空闲或者还有核心线程没有被创建)则创建一个新的工作线程来执行任务.如果核心线程都在执行任务,则进入下个流程 线程池判断工作队列是否已满,如果工作队列没有满,则将新提交的任务存储在这个工作队列里.如果工作队列满了,则进入下个流程 判断线程池里的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务.如果已经满了,则交给饱和策略来处理这个任务    2. 线程

java classLoader体系结构使用详解

原创整理不易,转载请注明出处:java classLoader体系结构使用详解 代码下载地址:http://www.zuidaima.com/share/1774052029516800.htm jvm classLoader architecture: Bootstrap ClassLoader/启动类加载器 主要负责jdk_home/lib目录下的核心 api 或 -Xbootclasspath 选项指定的jar包装入工作. Extension ClassLoader/扩展类加载器  主要负

《Tomcat与Java Web开发技术详解》思维导图

越想构建上层建筑,就越觉得底层基础很重要.补课系列. 书是良心书,就是太基础了,正适合补课. [纯文字版] Tomcat与Java Web开发技术详解 Servlet Servlet的生命周期 初始化 1Servlet容器加载Servlet类 2Servlet容器创建ServletConfig,初始化配置信息 3Servlet容器创建Servlet对象 4Servlet容器调用Servlet对象的init(ServletConfig) 时机:首次被请求或配置了<load-on-startup>

S2SH框架集成详解(Struts 2.3.16 + Spring 3.2.6 + Hibernate 3.6.10)

近期集成了一次较新版本的s2sh,出现了不少问题,网上资料也是良莠不齐,有的甚至就是扯淡,简单的把jar包扔进去就以为是集成成功了,在这里整理一下详细的步骤,若哪位有什么不同看法,可以留言,欢迎批评改正. 首先说下集成的环境,Eclipse 4.4,Tomcat 7.0.54,Struts2.3.16,Hibernate3.6.10,Spring3.2.6 相关JAR包已上传至百度云:http://pan.baidu.com/s/1pJluA5l 搭建Struts2框架 1. 创建Java We

Java 8 Stream API详解

Java 8 Stream API详解 一.Stream API介绍 Java 8引入了全新的Stream API,此Stream与Java I/O包里的InputStream和OutputStream是完全不同的概念,它不同于StAX对XML解析的Stream,也不同于Amazon Kinesis对大数据实时处理的Stream.Stream API更像具有Iterable的集合类,但行为和集合类又有所不同,它是对集合对象功能的增强,专注于对集合对象进行各种非常便捷.高效的聚合操作或大批量数据操

Java内存模型(JMM)详解

在Java JVM系列文章中有朋友问为什么要JVM,Java虚拟机不是已经帮我们处理好了么?同样,学习Java内存模型也有同样的问题,为什么要学习Java内存模型.它们的答案是一致的:能够让我们更好的理解底层原理,写出更高效的代码. 就Java内存模型而言,它是深入了解Java并发编程的先决条件.对于后续多线程中的线程安全.同步异步处理等更是大有裨益. 硬件内存架构 在学习Java内存模型之前,先了解一下计算机硬件内存模型.我们多知道处理器与计算机存储设备运算速度有几个数量级的差别.总不能让处理

《Java网络编程核心技术详解》赶稿中......

<精通JPA与Hibernate:Java对象持久化技术详解>这本书写完,就开始着手写<Java网络编程核心技术详解>一书,已经写了一大半,内容包括:Java网络编程的基础知识. 套接字编程.非阻塞通信.创建HTTP服务器与客户程序.数据报通信.对象的序列化与反序列化.Java反射机制.RMI框架.JDBC API.JavaMail API.MVC设计模式.XML处理.安全网络通信.CORBA和Web服务. 每写一章,都会遇到一些挑战,主要是在调试程序时,没有出现预期的结果.例如分