Spark入门实战系列--2.Spark编译与部署(下)--Spark编译安装

【注】该系列文章以及使用到安装包/测试数据 可以在《倾情大奉送--Spark入门实战系列》获取

1、编译Spark

Spark可以通过SBT和Maven两种方式进行编译,再通过make-distribution.sh脚本生成部署包。SBT编译需要安装git工具,而Maven安装则需要maven工具,两种方式均需要在联网下进行,通过比较发现SBT编译速度较慢(原因有可能是1、时间不一样,SBT是白天编译,Maven是深夜进行的,获取依赖包速度不同 2、maven下载大文件是多线程进行,而SBT是单进程),Maven编译成功前后花了3、4个小时。

1.1 编译Spark(SBT)

1.1.1 安装git并编译安装

1.  从如下地址下载git安装包

http://www.onlinedown.net/softdown/169333_2.htm

https://www.kernel.org/pub/software/scm/git/

如果linux是CentOS操作系统可以通过:yum install git直接进行安装

由于从https获取内容,需要安装curl-devel,可以从如下地址获取

http://rpmfind.net/linux/rpm2html/search.php?query=curl-devel

如果linux是CentOS操作系统可以通过:yum install curl-devel直接进行安装

2. 上传git并解压缩

把git-1.7.6.tar.gz安装包上传到/home/hadoop/upload目录中,解压缩然后放到/app目录下

$cd /home/hadoop/upload/

$tar -xzf git-1.7.6.tar.gz

$mv git-1.7.6 /app

$ll /app

3. 编译安装git

以root用户进行在git所在路径编译安装git

#yum install curl-devel

#cd /app/git-1.7.6 

#./configure

#make

#make install

4. 把git加入到PATH路径中

打开/etc/profile把git所在路径加入到PATH参数中

export GIT_HOME=/app/git-1.7.6

export PATH=$PATH:$JAVA_HOME/bin:$MAVEN_HOME/bin:$GIT_HOME/bin

重新登录或者使用source /etc/profile使参数生效,然后使用git命令查看配置是否正确

1.1.2 下载Spark源代码并上传

1. 可以从如下地址下载到spark源代码:

http://spark.apache.org/downloads.html

http://d3kbcqa49mib13.cloudfront.net/spark-1.1.0.tgz

git clone https://github.com/apache/spark.git

把下载好的spark-1.1.0.tgz源代码包使用1.1.3.1介绍的工具上传到/home/hadoop/upload 目录下

2. 在主节点上解压缩

$cd /home/hadoop/upload/

$tar -xzf spark-1.1.0.tgz

3. 把spark-1.1.0改名并移动到/app/complied目录下

$mv spark-1.1.0 /app/complied/spark-1.1.0-sbt

$ls /app/complied

1.1.3 编译代码

编译spark源代码的时候,需要从网上下载依赖包,所以整个编译过程机器必须保证在联网状态。编译执行如下脚本:

$cd /app/complied/spark-1.1.0-sbt

$sbt/sbt assembly -Pyarn -Phadoop-2.2 -Pspark-ganglia-lgpl -Pkinesis-asl -Phive

整个编译过程编译了约十几个任务,重新编译N次,需要几个甚至十几个小时才能编译完成(主要看下载依赖包的速度)。

1.2 编译Spark(Maven)

1.2.1 安装Maven并配置参数

在编译前最好安装3.0以上版本的Maven,在/etc/profile配置文件中加入如下设置:

export MAVEN_HOME=/app/apache-maven-3.0.5

export PATH=$PATH:$JAVA_HOME/bin:$MAVEN_HOME/bin:$GIT_HOME/bin

1.2.2 下载Spark源代码并上传

1. 可以从如下地址下载到spark源代码:

http://spark.apache.org/downloads.html

http://d3kbcqa49mib13.cloudfront.net/spark-1.1.0.tgz

git clone https://github.com/apache/spark.git

把下载好的spark-1.1.0.tgz源代码包使用1.1.3.1介绍的工具上传到/home/hadoop/upload 目录下

2. 在主节点上解压缩

$cd /home/hadoop/upload/

$tar -xzf spark-1.1.0.tgz

3. 把spark-1.1.0改名并移动到/app/complied目录下

$mv spark-1.1.0 /app/complied/spark-1.1.0-mvn

$ls /app/complied

1.2.3 编译代码

编译spark源代码的时候,需要从网上下载依赖包,所以整个编译过程机器必须保证在联网状态。编译执行如下脚本:

$cd /app/complied/spark-1.1.0-mvn

$export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M -XX:ReservedCodeCacheSize=512m"

$mvn -Pyarn -Phadoop-2.2 -Pspark-ganglia-lgpl -Pkinesis-asl -Phive -DskipTests clean package

整个编译过程编译了约24个任务,整个过程耗时1小时45分钟。

1.3 生成Spark部署包

在Spark源码根目录下有一个生成部署包的脚本make-distribution.sh,可以通过执行如下命令进行打包 ./make-distribution.sh [--name] [--tgz] [--with-tachyon] <maven build options>

l  --name NAME和--tgz 结合可以生成spark-$VERSION-bin-$NAME.tgz 的部署包,不加此参数时NAME 为hadoop 的版本号

l  --tgz在根目录下生成 spark-$VERSION-bin.tgz ,不加此参数时不生成tgz 文件,只生成/dist 目录

l  --with-tachyon  是否支持内存文件系统Tachyon ,不加此参数时不支持tachyon

例子:

1. 生成支持yarn 、hadoop2.2.0 、hive 的部署包:

./make-distribution.sh --tgz --name 2.2.0 -Pyarn -Phadoop-2.2 -Phive

2. 生成支持yarn 、hadoop2.2.0 、hive 、ganglia 的部署包:

./make-distribution.sh --tgz --name 2.2.0 -Pyarn -Phadoop-2.2 -Pspark-ganglia-lgpl -P hive

1.3.1 生成部署包

使用如下命令生成Spark部署包,由于该脚本默认在JDK1.6进行,在开始时会进行询问是否继续,只要选择Y即可

$cd /app/complied/spark-1.1.0-mvn/

$./make-distribution.sh --tgz --name 2.2.0 -Pyarn -Phadoop-2.2 -Pspark-ganglia-lgpl -P hive

生成Spark部署包编译了约24个任务,用时大概1小时38分钟。

1.3.2 查看生成结果

生成在部署包位于根目录下,文件名类似于spark-1.1.0-bin-2.2.0.tgz。

2、安装Spark

2.1 上传并解压Spark安装包

1.我们使用上一步骤编译好的spark-1.1.0-bin-2.2.0.tgz文件作为安装包(也可以从网上下载native文件夹或者打包好的64位hadoop安装包),使用"Spark编译与部署(上)"中1. 3.1介绍的工具上传到/home/hadoop/upload 目录下

2. 在主节点上解压缩

$cd /home/hadoop/upload/

$tar -xzf spark-1.1.0-bin-2.2.0.tgz

3. 把spark改名并移动到/app/hadoop目录下

$mv spark-1.1.0-bin-2.2.0 /app/hadoop/spark-1.1.0

$ll /app/hadoop

2.2 配置/etc/profile

1. 打开配置文件/etc/profile

$sudo vi /etc/profile

2.     定义SPARK_HOME并把spark路径加入到PATH参数中

SPARK_HOME=/app/hadoop/spark-1.1.0

PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

2.3 配置conf/slaves

1. 打开配置文件conf/slaves

$cd /app/hadoop/spark-1.1.0/conf

$sudo vi slaves

2. 加入slave配置节点

hadoop1

hadoop2

hadoop3

2.4 配置conf/spark-env.sh

1. 打开配置文件conf/spark-env.sh

$cd /app/hadoop/spark-1.1.0/conf

$cp spark-env.sh.template spark-env.sh

$sudo vi spark-env.sh

2. 加入Spark环境配置内容,设置hadoop1为Master节点

export SPARK_MASTER_IP=hadoop1

export SPARK_MASTER_PORT=7077

export SPARK_WORKER_CORES=1

export SPARK_WORKER_INSTANCES=1

export SPARK_WORKER_MEMORY=512M

2.5 向各节点分发Spark程序

1. 进入hadoop1机器/app/hadoop目录,使用如下命令把spark文件夹复制到hadoop2和hadoop3机器

$cd /app/hadoop

$scp -r spark-1.1.0 [email protected]:/app/hadoop/

$scp -r spark-1.1.0 [email protected]:/app/hadoop/

2. 在从节点查看是否复制成功

2.6 启动Spark

$cd /app/hadoop/spark-1.1.0/sbin

$./start-all.sh

2.7 验证启动

此时在hadoop1上面运行的进程有:Worker和Master

此时在hadoop2和hadoop3上面运行的进程有只有Worker

通过 netstat -nlt 命令查看hadoop1节点网络情况

在浏览器中输入 http://hadoop1:8080(需要注意的是要在网络设置中把hadoop*除外,否则会到外网DNS解析,出现无法访问的情况) 既可以进入Spark集群状态页面

2.8 验证客户端连接

进入hadoop1节点,进入spark的bin目录,使用spark-shell连接集群

$cd /app/hadoop/spark-1.1.0/bin

$spark-shell --master spark://hadoop1:7077 --executor-memory 500m

在命令中只指定了内存大小并没有指定核数,所以该客户端将占用该集群所有核并在每个节点分配500M内存

3、Spark测试

3.1 使用Spark-shell测试

这里我们测试一下在Hadoop中大家都知道的WordCout程序,在MapReduce实现WordCout需要Map、Reduce和Job三个部分,而在Spark中甚至一行就能够搞定。下面就看一下是如何实现的:

3.1.1 启动HDFS

$cd /app/hadoop/hadoop-2.2.0/sbin

$./start-dfs.sh

通过jps观察启动情况,在hadoop1上面运行的进程有:NameNode、SecondaryNameNode和DataNode

hadoop2和hadoop3上面运行的进程有:NameNode和DataNode

3.1.2 上传数据到HDFS中

把hadoop配置文件core-site.xml文件作为测试文件上传到HDFS中

$hadoop fs -mkdir -p /user/hadoop/testdata

$hadoop fs -put /app/hadoop/hadoop-2.2.0/etc/hadoop/core-site.xml /user/hadoop/testdata

3.1.3 启动Spark

$cd /app/hadoop/spark-1.1.0/sbin

$./start-all.sh

3.1.4 启动Spark-shell

在spark客户端(这里在hadoop1节点),使用spark-shell连接集群

$cd /app/hadoop/spark-1.1.0/bin

$./spark-shell --master spark://hadoop1:7077 --executor-memory 512m --driver-memory 500m

3.1.5 运行WordCount脚本

下面就是WordCount的执行脚本,该脚本是scala编写,以下为一行实现:

scala>sc.textFile("hdfs://hadoop1:9000/user/hadoop/testdata/core-site.xml").flatMap(_.split(" ")).map(x=>(x,1)).reduceByKey(_+_).map(x=>(x._2,x._1)).sortByKey(false).map(x=>(x._2,x._1)).take(10)

为了更好看到实现过程,下面将逐行进行实现:

scala>val rdd=sc.textFile("hdfs://hadoop1:9000/user/hadoop/testdata/core-site.xml")

scala>rdd.cache()

scala>val wordcount=rdd.flatMap(_.split(" ")).map(x=>(x,1)).reduceByKey(_+_)

scala>wordcount.take(10)

scala>val wordsort=wordcount.map(x=>(x._2,x._1)).sortByKey(false).map(x=>(x._2,x._1))

scala>wordsort.take(10)

词频统计结果如下:

Array[(String, Int)] = Array(("",100), (the,7), (</property>,6), (<property>,6), (under,3), (in,3), (License,3), (this,2), (-->,2), (file.,2))

3.1.6 观察运行情况

通过http://hadoop1:8080查看Spark运行情况,可以看到Spark为3个节点,每个节点各为1个内核/512M内存,客户端分配3个核,每个核有512M内存。

通过点击客户端运行任务ID,可以看到该任务在hadoop2和hadoop3节点上运行,在hadoop1上并没有运行,主要是由于hadoop1为NameNode和Spark客户端造成内存占用过大造成

3.2 使用Spark-submit测试

从Spark1.0.0开始,Spark提供了一个易用的应用程序部署工具bin/spark-submit,可以完成Spark应用程序在local、Standalone、YARN、Mesos上的快捷部署。该工具语法及参数说明如下:

Usage: spark-submit [options] <app jar | python file> [app options]

Options:

--master MASTER_URL          spark://host:port, mesos://host:port, yarn, or local.

--deploy-mode DEPLOY_MODE  driver运行之处,client运行在本机,cluster运行在集群

--class CLASS_NAME            应用程序包的要运行的class

--name NAME                  应用程序名称

--jars JARS                     用逗号隔开的driver本地jar包列表以及executor类路径

--py-files PY_FILES              用逗号隔开的放置在Python应用程序

PYTHONPATH上的.zip, .egg, .py文件列表

--files FILES                    用逗号隔开的要放置在每个executor工作目录的文件列表

--properties-file FILE           设置应用程序属性的文件放置位置,默认是conf/spark-defaults.conf

--driver-memory MEM         driver内存大小,默认512M

--driver-java-options           driver的java选项

--driver-library-path            driver的库路径Extra library path entries to pass to the driver

--driver-class-path             driver的类路径,用--jars 添加的jar包会自动包含在类路径里

--executor-memory MEM       executor内存大小,默认1G

Spark standalone with cluster deploy mode only:

--driver-cores NUM           driver使用内核数,默认为1

--supervise                   如果设置了该参数,driver失败是会重启

Spark standalone and Mesos only:

--total-executor-cores NUM    executor使用的总核数

YARN-only:

--executor-cores NUM         每个executor使用的内核数,默认为1

--queue QUEUE_NAME        提交应用程序给哪个YARN的队列,默认是default队列

--num-executors NUM        启动的executor数量,默认是2个

--archives ARCHIVES          被每个executor提取到工作目录的档案列表,用逗号隔开

3.2.1 运行脚本1

该脚本为Spark自带例子,在该例子中个计算了圆周率π的值,以下为执行脚本:

$cd /app/hadoop/spark-1.1.0/bin

$./spark-submit --master spark://hadoop1:7077 --class org.apache.spark.examples.SparkPi --executor-memory 512m ../lib/spark-examples-1.1.0-hadoop2.2.0.jar 200

参数说明(详细可以参考上面的参数说明):

l  --master Master所在地址,可以有Mesos、Spark、YARN和Local四种,在这里为Spark Standalone集群,地址为spark://hadoop1:7077

l  --class应用程序调用的类名,这里为org.apache.spark.examples.SparkPi

l  --executor-memory 每个executor所分配的内存大小,这里为512M

l  执行jar包 这里是../lib/spark-examples-1.1.0-hadoop2.2.0.jar

l  分片数目 这里数目为200

3.2.2 观察运行情况

通过观察Spark集群有3个Worker节点和正在运行的1个应用程序,每个Worker节点为1内核/512M内存。由于没有指定应用程序所占内核数目,则该应用程序占用该集群所有3个内核,并且每个节点分配512M内存。

根据每个节点负载情况,每个节点运行executor并不相同,其中hadoop1的executor数目为0。而hadoop3执行executor数为10个,其中5个EXITED状态,5个KILLED状态。

3.2.3 运行脚本2

该脚本为Spark自带例子,在该例子中个计算了圆周率π的值,区别脚本1这里指定了每个executor内核数据,以下为执行脚本:

$cd /app/hadoop/spark-1.1.0/bin

$./spark-submit --master spark://hadoop1:7077 --class org.apache.spark.examples.SparkPi --executor-memory 512m --total-executor-cores 2 ../lib/spark-examples-1.1.0-hadoop2.2.0.jar 200

参数说明(详细可以参考上面的参数说明):

l  --master Master所在地址,可以有Mesos、Spark、YARN和Local四种,在这里为Spark Standalone集群,地址为spark://hadoop1:7077

l  --class应用程序调用的类名,这里为org.apache.spark.examples.SparkPi

l  --executor-memory 每个executor所分配的内存大小,这里为512M

l  --total-executor-cores 2 每个executor分配的内核数

l  执行jar包 这里是../lib/spark-examples-1.1.0-hadoop2.2.0.jar

l  分片数目 这里数目为200

3.2.4 观察运行情况

通过观察Spark集群有3个Worker节点和正在运行的1个应用程序,每个Worker节点为1内核/512M内存。由于指定应用程序所占内核数目为2,则该应用程序使用该集群所有2个内核。

作者:石山园  出处:http://www.cnblogs.com/shishanyuan/

时间: 01-06

Spark入门实战系列--2.Spark编译与部署(下)--Spark编译安装的相关文章

Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”. l“机器学习是对能通过经验自动改进的计算机算法的研究”. l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said

Spark入门实战系列--7.Spark Streaming(下)--实时流计算Spark Streaming实战

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.实例演示 1.1 流数据模拟器 1.1.1 流数据说明 在实例演示中模拟实际情况,需要源源不断地接入流数据,为了在演示过程中更接近真实环境将定义流数据模拟器.该模拟器主要功能:通过Socket方式监听指定的端口号,当外部程序通过该端口连接并请求数据时,模拟器将定时将指定的文件数据随机获取发送给外部程序. 1.1.2 模拟器代码 import java.io.{PrintWriter} impor

Spark 个人实战系列(1)--Spark 集群安装

前言: CDH4不带yarn和spark, 因此需要自己搭建spark集群. 这边简单描述spark集群的安装过程, 并讲述spark的standalone模式, 以及对相关的脚本进行简单的分析. spark官网: http://spark.apache.org/downloads.html *)安装和部署 环境: 172.16.1.109~172.16.1.111三台机器(对应域名为tw-node109~tw-node111), centos6.4, 已部署cdh4 目标是: 搭建一个spar

Spark入门实战

星星之火,可以燎原 Spark简介 Spark是一个开源的计算框架平台,使用该平台,数据分析程序可自动分发到集群中的不同机器中,以解决大规模数据快速计算的问题,同时它还向上提供一个优雅的编程范式,使得数据分析人员通过编写类似于本机的数据分析程序即可实现集群并行计算. Spark项目由多个紧密集成的组件组成.核心是Spark Core组件,它实现了Spark的基本功能,包括:任务调度.内存管理.错误恢复.与存储系统交互等模块,特别的,Spark Core还定义了弹性分布式数据集(RDD)的API,

Caffe学习系列(一)Ubuntu16.04下搭建编译Caffe环境,并运行MNIST示例(仅CPU)

前言: 正文: 1.安装必要依赖包: sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev sudo apt-get install libatlas-base-dev sudo apt-get

Spark编译与部署

Spark入门实战系列--2.Spark编译与部署(上)--基础环境搭建 [注] 1.该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取: 2.Spark编译与部署将以CentOS 64位操作系统为基础,主要是考虑到实际应用一般使用64位操作系统,内容分为三部分:基础环境搭建.Hadoop编译安装和Spark编译安装,该环境作为后续实验基础: 3.文章演示了Hadoop.Spark的编译过程,同时附属资源提供了编译好的安装包,觉得编译费时间可以直接使用这些

Spark3000门徒第12课Spark HA实战总结

今晚听了王家林老师的第12课Spark HA实战,课堂笔记以及作业如下: Spark HA需要安装zookeeper,推荐稳定版3.4.6. 1.下载zookeeper3.4.6,2.配置环境变量3.创建data logs4.vi conf/zoo.cfg5 data目录中创建myid spark-env.sh 配置HA : export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zo

使用scala开发spark入门总结

使用scala开发spark入门总结 一.spark简单介绍 关于spark的介绍网上有很多,可以自行百度和google,这里只做简单介绍.推荐简单介绍连接:http://blog.jobbole.com/89446/ 1.    spark是什么? Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架.一般配合hadoop使用,可以增强hadoop的计算性能. 2.    Spark的优点有哪些? Sp

Spark入门(Python)

Hadoop是对大数据集进行分布式计算的标准工具,这也是为什么当你穿过机场时能看到”大数据(Big Data)”广告的原因.它已经成为大数据的操作系统,提供了包括工具和技巧在内的丰富生态系统,允许使用相对便宜的商业硬件集群进行超级计算机级别的计算.2003和2004年,两个来自Google的观点使Hadoop成为可能:一个分布式存储框架(Google文件系统),在Hadoop中被实现为HDFS:一个分布式计算框架(MapReduce). 这两个观点成为过去十年规模分析(scaling analy