Spark机器学习实战视频

深入浅出Spark机器学习实战(用户行为分析)
课程观看地址:http://www.xuetuwuyou.com/course/144
课程出自学途无忧网:http://www.xuetuwuyou.com

一、课程目标
 熟练掌握SparkSQL的各种操作,深入了解Spark内部实现原理
 深入了解SparkML机器学习各种算法模型的构建和运行
 熟练Spark的API并能灵活运用
 能掌握Spark在工作当中的运用

二、适合人群
 适合给,有java,scala基础,想往大数据spark机器学习这块发展
 适合给想学习spark,往数据仓库,大数据挖掘机器学习,方向发展的学员

三、课程用到的软件及版本:
Spark2.0,Spark1.6.2,STS,maven,Linux Centos6.5,mysql,mongodb3.2

四、课程目录:

课时1:Spark介绍
课时2:Spark2集群安装 
课时3:Spark RDD操作 
课时4:SparkRDD原理剖析
课时5:Spark2sql从mysql中导入 
课时6:Spark1.6.2sql与mysql数据交互
课时7:SparkSQL java操作mysql数据
课时8:Spark统计用户的收藏转换率 
课时9:Spark梳理用户的收藏以及订单转换率
课时10:最终获取用户的收藏以及订单转换率 
课时11:Spark Pipeline构建随机森林回归预测模型 
课时12:Spark 随机森林回归预测结果并存储进mysql 
课时13:Spark对收藏转预测换率与真正的转换率对比,以及决策树模型构建
课时14:Spark机器学习对各种监督与非监督分类学习详细介绍 
课时15:Spark协同过滤算法,构建用户与产品模型 
课时16:Spark协同算法完成给用户推荐产品
课时17:mongodb的安装以及其基本操作 
课时18:Spark与mongodb整合 
课时19:Spark预测收藏以及给用户推荐的产品存储进mongodb 
课时20:操作RDD需要注意点,以及Spark内存分配资源调优
课时21:Spark整个学习过程及其总结

推荐组合学习:《国内首部系统性介绍Scala语言培训课程》
课程观看地址:http://www.xuetuwuyou.com/course/12

Spark+Kafka 实时流机器学习实战
课程观看地址:http://www.xuetuwuyou.com/course/147

Spark全面精讲(基于Spark2版本+含Spark调优+超多案例)
课程观看地址:http://www.xuetuwuyou.com/course/149

时间: 12-20

Spark机器学习实战视频的相关文章

DT大数据梦工厂Spark机器学习相关视频资料

大数据未来几年发展的重点方向,大数据战略已经在十八届五中全会上作为重点战略方向,中国在大数据方面才刚刚起步,但是在美国已经产生了上千亿的市场价值.举个例子,美国通用公司是一个生产飞机发动机的一个公司,这家公司在飞机发动机的每一个零部件上都安装了传感器,这些传感器在飞机发动机运作的同时不断的把发动机状态的数据传到通用公司的云平台上,通用公司又有很多数据分析中心专门接受这些数据,根据大数据的分析可以随时掌握每一家航空公司发动机的飞行状况,可以告知这些航空公司发动机的哪些部件需要检修或保养,避免飞机事

【机器学习实战】Machine Learning in Action 代码 视频 项目案例

MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apache中文网) 视频每周更新:如果你觉得有价值,请帮忙点 Star[后续组织学习活动:sklearn + tensorflow] ApacheCN - 学习机器学习群[629470233] 第一部分 分类 1.) 机器学习基础 2.) k-近邻算法 3.) 决策树 4.) 基于概率论的分类方法:朴素

Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”. l“机器学习是对能通过经验自动改进的计算机算法的研究”. l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said

王家林 大数据Spark超经典视频链接全集[转]

压缩过的大数据Spark蘑菇云行动前置课程视频百度云分享链接 链接:http://pan.baidu.com/s/1cFqjQu SCALA专辑 Scala深入浅出经典视频 链接:http://pan.baidu.com/s/1i4Gh3Xb 密码:25jc DT大数据梦工厂大数据spark蘑菇云Scala语言全集(持续更新中) http://www.tudou.com/plcover/rd3LTMjBpZA/ 1 Spark视频王家林第1课:大数据时代的“黄金”语言Scala 2 Spark视

《机器学习实战》学习笔记:k-近邻算法实现

上一学期主要的学习和研究任务是模式识别.信号理论和图像处理,实际上这些领域都与机器学习有或多或少的交集.因此,仍在继续深入阅读<机器学习>.观看斯坦福大学的机器学习课程.在此过程中因为未来课题组项目的要求,需要接触Python,因此选择了<机器学习实战>这本书,同时参考教材和视频一起学习.事实上该书的理论研究不够深入,只能算是练习Python并验证一些著名的机器学习算法的工具书了. 在介绍k-近邻算法之前,对机器学习算法进行简单的分类和梳理:简单来说,机器学习主要分为两大类,有监督

《机器学习实战》读书笔记2:K-近邻(kNN)算法

声明:文章是读书笔记,所以必然有大部分内容出自<机器学习实战>.外加个人的理解,另外修改了部分代码,并添加了注释 1.什么是K-近邻算法? 简单地说,k-近邻算法采用测量不同特征值之间距离的方法进行分类.不恰当但是形象地可以表述为近朱者赤,近墨者黑.它有如下特点: 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 适用数据范围:数值型和标称型 2.K-近邻算法的工作原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中

《机器学习实战》之K-均值聚类算法的python实现

<机器学习实战>之K-均值聚类算法的python实现 最近的项目是关于"基于数据挖掘的电路故障分析",项目基本上都是师兄们在做,我只是在研究关于项目中用到的如下几种算法:二分均值聚类.最近邻分类.基于规则的分类器以及支持向量机.基于项目的保密性(其实也没有什么保密的,但是怕以后老板看到我写的这篇博文,所以,你懂的),这里就不介绍"基于数据挖掘的电路故障分析"的思路了. 废话不多说了,开始正题哈. 基本K-均值聚类算法 基本K均值算法的基本思路为:首先选择

机器学习实战笔记(Python实现)-03-朴素贝叶斯

--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------

机器学习实战------利用logistics回归预测病马死亡率

大家好久不见,实战部分一直托更,很不好意思.本文实验数据与代码来自机器学习实战这本书,倾删. 一:前期代码准备 1.1数据预处理 还是一样,设置两个数组,前两个作为特征值,后一个作为标签.当然这是简单的处理,实际开发中特征值都是让我们自己选的,所以有时候对业务逻辑的理解还是很重要的. 1.2 sigmoid函数设置 1.3固定步长梯度上升算法 这段代码见一面1.4节. Alpha表示步长,maxcycles表示最大的迭代次数,其中weights=ones((n,1))是初始化一个全部为一的n*1