# EM basics- the Maxwell Equations

All the two important problem that the EM try to describe and explain are propogation and radiation of EM wave, on the basics of Maxwell Equations. So we have to talk about the Maxwell Equations  ,the greatest achievement in my opinion, first , then the propogation problem and then, the radiation problem.

• 1 the Maxwell Equations

In most conditions,except in static electronic field or static magnetic field, the two are never exits indepently. The Maxwell Equations are explicitly summarized the relationship between E and H, and between the source of them , a time-varied electric current or a time-varied charge.

The first two equations are Gauss‘s law in E field and H field. That is, Equation [1] is true at any point in space. That is, if there exists electric charge somewhere, then the divergence of D ( electronic displacement vector) at that point is nonzero, otherwise it is equal to zero.Gauss‘ Law states that electric charge acts as sources or sinks for Electric Fields.You see that both of these equations specify the divergence of the field in question. For the top equation, we know that Gauss‘ Law for Electric Fields states that the divergence of the Electric Flux Density D is equal to the volume electric charge density. But the second equation, Gauss‘ Magnetism law states that the divergence of the Magnetic Flux Density (B) is zero.

Why? Why isn‘t the divergence of B equal to the magnetic charge density?

Well - it is. But it just so happens that no one has ever found magnetic charge - not in a laboratory or on the street or on the subway. And therefore, until this hypothetical magnetic charge is found, we set the right side of Gauss‘ Law for Magnetic Fields to zero.

Faraday‘s law shows that a changing magnetic field within a loop gives rise to an induced current, which is due to a force or voltage within that circuit. We can then say the following about Farday‘s Law:

• Electric Current gives rise to magnetic fields. Magnetic Fields around a circuit gives rise to electric current.
• A Magnetic Field Changing in Time gives rise to an E-field circulating around it.
• A circulating E-field in time gives rise to a Magnetic Field Changing in time.
• A flowing electric current (J) gives rise to a Magnetic Field that circles the current
• A time-changing Electric Flux Density (D) gives rise to a Magnetic Field that circles the D field

Ampere‘s Law with the contribution of Maxwell nailed down the basis for Electromagnetics as we currently understand it. And so we know that a time varyingD gives rise to an H field, but from Farday‘s Law we know that a varying H field gives rise to an E field.... and so on and so forth and the electromagnetic waves propagate.

[email protected]
• 时间： 03-13

## Maxwell&rsquo;s Equations

A=cos(pi*x-pi/2)i+sin(pi*x)j

## Radio Basics for RFID

Radio Basics for RFID (2015/09/24 22:30:37) Radio Basics for RFID (2015/09/24 22:30:37) Radio Basics for RFID (2015/09/24 22:30:37) Radio Basics for RFID (2015/09/24 22:30:37) Radio Basics for RFID (2015/09/24 22:30:37) Radio Basics for RFID (2015/09

## EM算法概念

EM算法是一种非常经典的alternative optimizing算法.alternative optimizing的思想就是对于一个最优化问题,可以计算分为两步或者参数分为两个,就可以随机任意的选择一个起始值或位置,固定一个参数A,以另一个参数B进行优化,然后固定参数B,以参数A进行优化,直到收敛未知.前面博文中所讲述的K-means也就这样的一个过程,或者meanshift均值漂移也是这样的一个思想.今天学习的一个算法也是这样一个概念.这里依然做一个入门级的概念理解指导,不做原理性的深入,

## css中的px、em、rem 详解

概念介绍: 1.px (pixel,像素):是一个虚拟长度单位,是计算机系统的数字化图像长度单位,如果px要换算成物理长度,需要指定精度DPI(Dots Per Inch,每英寸像素数),在扫描打印时一般都有DPI可选.Windows系统默认是96dpi,Apple系统默认是72dpi. 2.em(相对长度单位,相对于当前对象内文本的字体尺寸):是一个相对长度单位,最初是指字母M的宽度,故名em.现指的是字符宽度的倍数,用法类似百分比,如:0.8em, 1.2em,2em等.通常1em=16px

## 关于EM的理解

任意浏览器的默认字体高度16px(16像素). 所有未经调整的浏览器都符合: 1em=16px.那么12px=0.75em,10px=0.625em.为了简化font-size的换算,需要在css中的body选择器中声明font-size=62.5%,这就使em值变为 16px*62.5%=10px, 这样12px=1.2em, 10px=1em 也就是说只需要将你的原来的px数值除以10,然后换上em作为单位就行了. 1.浏览器的默认字体大小是16px 2.如果元素自身没有设置字体大小,那么元

## EM算法（1）：K-means 算法

目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法详解 EM算法(1) : K-means算法 1. 简介 K-means算法是一类无监督的聚类算法,目的是将没有标签的数据分成若干个类,每一个类都是由相似的数据组成.这个类的个数一般是认为给定的. 2. 原理 假设给定一个数据集$\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2,...,\mathbf{x}_N \}$, 和类的个数K.我们的每个类都用一个中心点\$

## EM算法（3）：EM算法详解

目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法详解

## Oracle安装完成后重新安装EM过程

启动Oracle11G emctl start dbconsole 报如下错误 Environment variable ORACLE_UNQNAME not defined. Please set ORACLE_UNQNAME to da 此时输入export ORACLE_UNQNAME=orcl(实例名) 重新输入 emctl start dbconsole 报如下错误 OC4J Configuration issue. /oracle/product/11.1.0/db_1/oc4j/j

## em创建的两种方式

em创建(两种方式1,图形dbca,当然了,前提是先创建一个监听. 2,手工命令安装em)手工命令创建em(确保数据库开启,确保监听正常并且最好是动态监听,确保system表空间够用大概1G左右),我的空间有限只给了800M,如下 select file_name,tablespace_name,bytes/1024/1024 from dba_data_files where tablespace_name like 'SYSTEM';alter database datafile '/u01

## CSS px, em, 和rem； float以及clear(第一篇学习)

px:相对长度,相对于屏幕分辨率: em:相对长度单位,相对于当前对象内文本的字体尺寸.如当前对行内文本的字体尺寸未被人为设置,则相对于浏览器的默认字体尺寸.  任意浏览器的默认字体高都是16px.所有未经调整的浏览器都符合: 1em=16px.那么12px=0.75em,10px=0.625em.为了简化font-size的换算,需要在css中的body选择器中声明Font-size=62.5%,这就使em值变为 16px*62.5%=10px, 这样 12px=1.2em, 10px=1em