CSE 6363 - Machine Learning Homework MLE, MAP, and Basic Supervised Learning

CSE 6363 - Machine Learning Homework 1: MLE, MAP, and Basic Supervised Learning
CSE 6363 - Machine Learning
Homework 1- Spring 2019
Due Date: Feb. 8 2019, 11:59 pm
MLE and MAP
1. In class we covered the derivation of basic learning algorithms to derive a model for a coin flip task.
Consider a similar problems where we monitor the time of the occurrence of a severe computer failure
(which requires a system reboot) and which occurs according to a Poisson process (i.e. it is equally likely
to happen at any point in time with an arrival rate of λ ). For a Poisson process the probability of the first
event to occur at time x after a restart is described by an exponential distribution:
pλ(x) = λeλx
We are assuming here that the different data points we measured are independent, i.e. nothing changes
between reboots.
a) Derive the performance function and the optimization result for analytic MLE optimization for a
model learning algorithm that returns the MLE for the parameter λ of the model given a data set
D = {k1, ...kn}. Make sure you show your steps.
b) Apply the learning algorithm from a) to the following dataset:
D = {1.5, 3, 2.5, 2.75, 2.9, 3} .
c) Derive the optimization for a MAP approach using the conjugate prior, the Gamma distribution.
The Gamma distribution is:
Note that α and β are constants and that there still is only one parameter, λ, to be learned. Show
your derivation and the result for the data in part b) and values for α and β of 5 and 10, respectively.
K Nearest Neighbor
2. Consider the problem where we want to predict the gender of a person from a set of input parameters,
namely height, weight, and age. Assume our training data is given as follows:
2019 Manfred Huber Page 1
CSE 6363 - Machine Learning Homework 1: MLE, MAP, and Basic Supervised Learning
D = { ((170, 57, 32), W),
((192, 95, 28), M),
((150, 45, 30), W),
((170, 65, 29), M),
((175, 78, 35), M),
((185, 90, 32), M),
((170, 65, 28), W),
((155, 48, 31), W),
((160, 55, 30), W),
((182, 80, 30), M),
((175, 69, 28), W),
((180, 80, 27), M),
((160, 50, 31), W),
((175, 72, 30), M), }
a) Using Cartesian distance as the similarity measurements show the results of the gender prediction
for the following data items for values of K of 1, 3, and 5. Include the intermedia steps (i.e. distance
calculation, neighbor selection, prediction).
(155, 40, 35),(170, 70, 32),(175, 70, 35),(180, 90, 20)
b) Implement the KNN algorithm for this problem. Your implementation should work with different
training data sets and allow to input a data point for the prediction.
c) Repeat the prediction using KNN when the age data is removed. Try to determine (using multiple
target values) which data gives you better predictions. Show your intermediate results.
Gaussian Na¨ve Bayes Classification
3. Using the data from Problem 2, build a Gaussian Na¨ve Bayes classifier for this problem. For this you
have to learn Gaussian distribution parameters for each input data feature, i.e. for p(height|W), p(height|M),
p(weight|W), p(weight|M), p(age|W), p(age|M).
a) Learn/derive the parameters for the Gaussian Na¨ve Bayes Classifier and apply them to the same
target as in problem 2b). Show your intermediate steps.
b) Implement the Gaussian Na¨ve Bayes Classifier for this problem.
c) Repeat the experiment in part 2c) with the Gaussian Na¨ve Bayes Classifier.
d) Compare the results of the two classifiers and discuss reasons why one might perform better than
the other.
2019 Manfred Huber

因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:[email protected]

微信:codinghelp

原文地址:https://www.cnblogs.com/wxyst/p/10353928.html

时间: 02-05

CSE 6363 - Machine Learning Homework MLE, MAP, and Basic Supervised Learning的相关文章

1. Supervised Learning - Linear Regression

Linear Regression线性回归 Notation 给定一个样本集T 样本总数为m 每个样本记做 其中为输入变量,也称为特征变量:为我们要预测的输出变量,也称为目标变量 表示第个样本. 问题描述 给定一个样本集,学习一个函数 使得是对相应y的一个好的预测. 因为某些历史原因,h被称为假设(hypothesis). 整个过程如下图所示: 如果我们想要预测的目标变量是连续值,称为回归问题(regression): 当目标变量是少数离散值时,称为分类问题(classification). 如

2. Supervised Learning - Logistic Regression

Logistic Regression 逻辑回归解决问题类型 二分类问题(classification) Notation 给定一个样本集T 样本总数为m 每个样本记做 其中为输入变量,也称为特征变量:为我们要预测的输出变量,也称为目标变量 表示第个样本. Hypothesis的作用是,对于给定的输入变量,根据选择的参数计算输出变量=1的可能性 也就是 最终,当大于等于0.5时,预测y=1,当小于0.5时,预测y=0 假设是一下形式: 其中称为Logistic函数或者sigmoid函数,函数图象

A Brief Review of Supervised Learning

There are a number of algorithms that are typically used for system identification, adaptive control, adaptive signal processing, and machine learning. These algorithms all have particular similarities and differences. However, they all need to proce

(转载)[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation

[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation http://blog.csdn.net/walilk/article/details/50922854

【转载】Torch7 教程 Supervised Learning CNN

Torch7 教程 Supervised Learning CNN 分类:             机器学习              2014-08-08 15:59     1426人阅读     评论(0)     收藏     举报 cnnbpdeep learning 全部代码放在:https://github.com/guoyilin/CNN_Torch7 在搭建好Torch7之后,我们开始进行监督式Supervised Learning for CNN, Torch7提供了代码和一

如何区分监督学习(supervised learning)和非监督学习(unsupervised learning)

监督学习:简单来说就是给定一定的训练样本(这里一定要注意,样本是既有数据,也有数据对应的结果),利用这个样本进行训练得到一个模型(可以说是一个函数),然后利用这个模型,将所有的输入映射为相应的输出,之后对输出进行简单的判断从而达到了分类(或者说回归)的问题.简单做一个区分,分类就是离散的数据,回归就是连续的数据. 非监督学习:同样,给了样本,但是这个样本是只有数据,但是没有其对应的结果,要求直接对数据进行分析建模. 比如我们去参观一个画展,我们完全对艺术一无所知,但是欣赏完多幅作品之后,我们也能

(转载)SVM-基础(三)

支持向量机: Kernel  by pluskid, on 2010-09-11, in Machine Learning     70 comments 本文是"支持向量机系列"的第三篇,参见本系列的其他文章. 前面我们介绍了线性情况下的支持向量机,它通过寻找一个线性的超平面来达到对数据进行分类的目的.不过,由于是线性方法,所以对非线性的数据就没有办法处理了.例如图中的两类数据,分别分布为两个圆圈的形状,不论是任何高级的分类器,只要它是线性的,就没法处理,SVM 也不行.因为这样的数

5 Easy questions on Ensemble Modeling everyone should know

5 Easy questions on Ensemble Modeling everyone should know Introduction If you’ve ever participated in a data science competitions, you must be aware of the pivotal role that ensemble modeling plays. In fact, it is being said that ensemble modeling o

Dialog System 总结

本文包括对话系统分类.数据汇总.和一些目前对话系统paper的总结.评价. 以下paper的"一句话评论"均为个人观念,评价标准苛刻,也有可能夸大了论文的缺点,希望与持不同意见的各位有识之士共同讨论. 对话系统分类 Data Papers Neural Responding Machine for Short-Text Conversation Conversational Contextual Cues The Case of Personalization and History

NTU-Coursera机器学习:机器学习基石 (Machine Learning Foundations)

课讲内容 这门课以8周设计,分成 4个核心问题,每个核心问题约需2周的时间来探讨.每个约2个小时的录影中,每个小时为一个主题,以会各分成4到5个小段落,每个段落里会有一个后多个随堂的练习.我们在探讨每个核心问题的第二周.依上所述,課程的規畫如下: When Can Machines Learn? [何时可以使用机器学习] 第一周:(NTU-Coursera机器学习:机器学习问题与二元分类) 第一讲:The Learning Problem [机器学习问题]第二讲:Learning to Answ