JDK源码之AbstractCollection

public abstract class AbstractCollection<E> implements Collection<E> {
    /**
     * Sole constructor.  (For invocation by subclass constructors, typically
     * implicit.)
     */
    protected AbstractCollection() {
    }

    // Query Operations

    /**
     * Returns an iterator over the elements contained in this collection.
     *
     * @return an iterator over the elements contained in this collection
     */
    public abstract Iterator<E> iterator();

    public abstract int size();

    /**
     * {@inheritDoc}
     *
     * <p>This implementation returns <tt>size() == 0</tt>.
     */
    public boolean isEmpty() {
        return size() == 0;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This implementation iterates over the elements in the collection,
     * checking each element in turn for equality with the specified element.
     *
     * @throws ClassCastException   {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    public boolean contains(Object o) {
        Iterator<E> it = iterator();
        if (o==null) {
            while (it.hasNext())
                if (it.next()==null)
                    return true;
        } else {
            while (it.hasNext())
                if (o.equals(it.next()))
                    return true;
        }
        return false;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This implementation returns an array containing all the elements
     * returned by this collection‘s iterator, in the same order, stored in
     * consecutive elements of the array, starting with index {@code 0}.
     * The length of the returned array is equal to the number of elements
     * returned by the iterator, even if the size of this collection changes
     * during iteration, as might happen if the collection permits
     * concurrent modification during iteration.  The {@code size} method is
     * called only as an optimization hint; the correct result is returned
     * even if the iterator returns a different number of elements.
     *
     * <p>This method is equivalent to:
     *
     *  <pre> {@code
     * List<E> list = new ArrayList<E>(size());
     * for (E e : this)
     *     list.add(e);
     * return list.toArray();
     * }</pre>
     */
    public Object[] toArray() {
        // Estimate size of array; be prepared to see more or fewer elements
        Object[] r = new Object[size()];
        Iterator<E> it = iterator();
        for (int i = 0; i < r.length; i++) {
            if (! it.hasNext()) // fewer elements than expected
                return Arrays.copyOf(r, i);
            r[i] = it.next();
        }     //如果有更多的元素,调用finishToArray, 否则直接返回
        return it.hasNext() ? finishToArray(r, it) : r;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This implementation returns an array containing all the elements
     * returned by this collection‘s iterator in the same order, stored in
     * consecutive elements of the array, starting with index {@code 0}.
     * If the number of elements returned by the iterator is too large to
     * fit into the specified array, then the elements are returned in a
     * newly allocated array with length equal to the number of elements
     * returned by the iterator, even if the size of this collection
     * changes during iteration, as might happen if the collection permits
     * concurrent modification during iteration.  The {@code size} method is
     * called only as an optimization hint; the correct result is returned
     * even if the iterator returns a different number of elements.
     *
     * <p>This method is equivalent to:
     *
     *  <pre> {@code
     * List<E> list = new ArrayList<E>(size());
     * for (E e : this)
     *     list.add(e);
     * return list.toArray(a);
     * }</pre>
     *
     * @throws ArrayStoreException  {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    public <T> T[] toArray(T[] a) {
        // Estimate size of array; be prepared to see more or fewer elements
        int size = size();
        T[] r = a.length >= size ? a :
                  (T[])java.lang.reflect.Array
                  .newInstance(a.getClass().getComponentType(), size);
        Iterator<E> it = iterator();

        for (int i = 0; i < r.length; i++) {
            if (! it.hasNext()) { // fewer elements than expected
                if (a == r) {
                    r[i] = null; // null-terminate
                } else if (a.length < i) {
                    return Arrays.copyOf(r, i);
                } else {
                    System.arraycopy(r, 0, a, 0, i);
                    if (a.length > i) {
                        a[i] = null;
                    }
                }
                return a;
            }
            r[i] = (T)it.next();
        }
        // more elements than expected
        return it.hasNext() ? finishToArray(r, it) : r;
    }

    /**
     * The maximum size of array to allocate.
     * Some VMs reserve some header words in an array.
     * Attempts to allocate larger arrays may result in
     * OutOfMemoryError: Requested array size exceeds VM limit
     */
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * Reallocates the array being used within toArray when the iterator
     * returned more elements than expected, and finishes filling it from
     * the iterator.
     *
     * @param r the array, replete with previously stored elements
     * @param it the in-progress iterator over this collection
     * @return array containing the elements in the given array, plus any
     *         further elements returned by the iterator, trimmed to size
     */
    private static <T> T[] finishToArray(T[] r, Iterator<?> it) {
        int i = r.length;  // 从原有数组最尾位置开始添加
        while (it.hasNext()) {
            int cap = r.length;
            if (i == cap) { // 先扩充现在数组的容量
                int newCap = cap + (cap >> 1) + 1;  // 新容量大小, 3*cap+1                // overflow-conscious code
                if (newCap - MAX_ARRAY_SIZE > 0) // 超过整型最大值时
                    newCap = hugeCapacity(cap + 1);
                r = Arrays.copyOf(r, newCap); // 将原有数据复制到新的数组中
            }
            r[i++] = (T)it.next(); // 从原有数组最尾位置开始添加
        }
        // trim if overallocated
        return (i == r.length) ? r : Arrays.copyOf(r, i);
    }

    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError
                ("Required array size too large");
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }

    // Modification Operations

    /**
     * {@inheritDoc}
     *
     * <p>This implementation always throws an
     * <tt>UnsupportedOperationException</tt>.
     *
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     * @throws IllegalStateException         {@inheritDoc}
     */
    public boolean add(E e) {
        throw new UnsupportedOperationException();
    }

    /**
     * {@inheritDoc}
     *
     * <p>This implementation iterates over the collection looking for the
     * specified element.  If it finds the element, it removes the element
     * from the collection using the iterator‘s remove method.
     *
     * <p>Note that this implementation throws an
     * <tt>UnsupportedOperationException</tt> if the iterator returned by this
     * collection‘s iterator method does not implement the <tt>remove</tt>
     * method and this collection contains the specified object.
     *
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     */
    public boolean remove(Object o) {
        Iterator<E> it = iterator();
        if (o==null) {
            while (it.hasNext()) {
                if (it.next()==null) {
                    it.remove();
                    return true;
                }
            }
        } else {
            while (it.hasNext()) {
                if (o.equals(it.next())) {
                    it.remove();
                    return true;
                }
            }
        }
        return false;
    }

    // Bulk Operations

    /**
     * {@inheritDoc}
     *
     * <p>This implementation iterates over the specified collection,
     * checking each element returned by the iterator in turn to see
     * if it‘s contained in this collection.  If all elements are so
     * contained <tt>true</tt> is returned, otherwise <tt>false</tt>.
     *
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @see #contains(Object)
     */
    public boolean containsAll(Collection<?> c) {
        for (Object e : c)
            if (!contains(e))
                return false;
        return true;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This implementation iterates over the specified collection, and adds
     * each object returned by the iterator to this collection, in turn.
     *
     * <p>Note that this implementation will throw an
     * <tt>UnsupportedOperationException</tt> unless <tt>add</tt> is
     * overridden (assuming the specified collection is non-empty).
     *
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     * @throws IllegalStateException         {@inheritDoc}
     *
     * @see #add(Object)
     */
    public boolean addAll(Collection<? extends E> c) {
        boolean modified = false;
        for (E e : c)
            if (add(e))
                modified = true;
        return modified;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This implementation iterates over this collection, checking each
     * element returned by the iterator in turn to see if it‘s contained
     * in the specified collection.  If it‘s so contained, it‘s removed from
     * this collection with the iterator‘s <tt>remove</tt> method.
     *
     * <p>Note that this implementation will throw an
     * <tt>UnsupportedOperationException</tt> if the iterator returned by the
     * <tt>iterator</tt> method does not implement the <tt>remove</tt> method
     * and this collection contains one or more elements in common with the
     * specified collection.
     *
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     *
     * @see #remove(Object)
     * @see #contains(Object)
     */
    public boolean removeAll(Collection<?> c) {
        boolean modified = false;
        Iterator<?> it = iterator();
        while (it.hasNext()) {
            if (c.contains(it.next())) {
                it.remove();
                modified = true;
            }
        }
        return modified;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This implementation iterates over this collection, checking each
     * element returned by the iterator in turn to see if it‘s contained
     * in the specified collection.  If it‘s not so contained, it‘s removed
     * from this collection with the iterator‘s <tt>remove</tt> method.
     *
     * <p>Note that this implementation will throw an
     * <tt>UnsupportedOperationException</tt> if the iterator returned by the
     * <tt>iterator</tt> method does not implement the <tt>remove</tt> method
     * and this collection contains one or more elements not present in the
     * specified collection.
     *
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     *
     * @see #remove(Object)
     * @see #contains(Object)
     */
    public boolean retainAll(Collection<?> c) {
        boolean modified = false;
        Iterator<E> it = iterator();
        while (it.hasNext()) {
            if (!c.contains(it.next())) {
                it.remove();
                modified = true;
            }
        }
        return modified;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This implementation iterates over this collection, removing each
     * element using the <tt>Iterator.remove</tt> operation.  Most
     * implementations will probably choose to override this method for
     * efficiency.
     *
     * <p>Note that this implementation will throw an
     * <tt>UnsupportedOperationException</tt> if the iterator returned by this
     * collection‘s <tt>iterator</tt> method does not implement the
     * <tt>remove</tt> method and this collection is non-empty.
     *
     * @throws UnsupportedOperationException {@inheritDoc}
     */
    public void clear() {
        Iterator<E> it = iterator();
        while (it.hasNext()) {
            it.next();
            it.remove();
        }
    }

    //  String conversion

    /**
     * Returns a string representation of this collection.  The string
     * representation consists of a list of the collection‘s elements in the
     * order they are returned by its iterator, enclosed in square brackets
     * (<tt>"[]"</tt>).  Adjacent elements are separated by the characters
     * <tt>", "</tt> (comma and space).  Elements are converted to strings as
     * by {@link String#valueOf(Object)}.
     *
     * @return a string representation of this collection
     */
    public String toString() {
        Iterator<E> it = iterator();
        if (! it.hasNext())
            return "[]";

        StringBuilder sb = new StringBuilder();
        sb.append(‘[‘);
        for (;;) {
            E e = it.next();
            sb.append(e == this ? "(this Collection)" : e);
            if (! it.hasNext())
                return sb.append(‘]‘).toString();
            sb.append(‘,‘).append(‘ ‘);
        }
    }

}
时间: 03-30

JDK源码之AbstractCollection的相关文章

设置Eclipse可以Debug模式调试JDK源码,并显示局部变量的1

最近突然萌发了研究JDK源码的想法,所以就想到了在自己常用的Eclipse上可以调试JDK源码. 整个设置过程也很简单: 首先你要安装好JDK(我的JDK安装路径根目录是D:\Java\jdk-8u92-windows-x64),JDK安装路径里有个"src.zip"就是JDK的源码文件压缩包: 设置好环境变量的JAVA_HOME变量和PATH变量(JAVA_HOME变量值也是D:\Java\jdk-8u92-windows-x64). 然后打开Eclipse设置可以Debug模式调试

使用Eclipse跟踪JDK源码

首先我们要学会的是将JDK源码加载Eclipse中. 1.点"窗口"-->"首选项",选择左边的"Java"-->"已安装的JRE",然后选择我们安装的JRE,并单击它,然后选择右边的"编辑". 点"编辑"将出现如下的界面: 2.跟踪阅读源码 如上图,在我自己写的代码中包含了StringTokenizer类,我们要看它的具体定义,就只要按住"Ctrl"键,

eclipse中导入jdk源码、SpringMVC注解@RequestParam、SpringMVC文件上传源码解析、ajax上传excel文件

eclipse中导入jdk源码:http://blog.csdn.net/evolly/article/details/18403321, http://www.codingwhy.com/view/799.html. ------------------------------- SpringMVC注解@RequestParam:http://825635381.iteye.com/blog/2196911. --------------------------- SpringMVC文件上传源

JDK 源码 阅读 - 2 - 设计模式 - 创建型模式

A.创建型模式 抽象工厂(Abstract Factory) javax.xml.parsers.DocumentBuilderFactory DocumentBuilderFactory通过FactoryFinder实例化具体的Factory. 使用例子: DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory.newInstance(); DocumentBuilder docBuilder = docBuilder

JDK源码分析之concurrent包(三) -- Future方式的实现

上一篇我们基于JDK的源码对线程池ThreadPoolExecutor的实现做了分析,本篇来对Executor框架中另一种典型用法Future方式做源码解读.我们知道Future方式实现了带有返回值的程序的异步调用,关于异步调用的场景大家可以自行脑补Ajax的应用(获取返回结果的方式不同,Future是主动询问获取,Ajax是回调函数),这里不做过多说明. 在进入源码前,首先来看下Future方式相关的API: 接口Callable:有返回结果并且可能抛出异常的任务: 接口Future:表示异步

JDK源码之String、StringBuffer、StringBuilder

就String而言,平时工作中用得最多,但是很多时候还是用不好,有必要对他进行整体的分析下.如果看过Thinking in java,再看下JDK的源码,很多东西就会变得十分明了.现在对String的底层实现进行下分析. 首先是对构造函数而言,我工作中最常用到的可能就是new String(str)这个构造函数了,所以再在此关注这一个.这个构造函数是对传进来的String进行解析,将其放进一个数组当中,我们设定为arrayOfChar,String类定义了全局变量offset(偏移量),coun

阅读JDK源码有感

最近加班不是很严重,爱上了查看JDK源码,每天回来,准备一杯咖啡,开始阅读,受益良多.从上周开始阅读,觉得还是写下感想和学习心得比较好.以后每天阅读,每天记下收获.总体来说,我觉得JDK源码写得十分漂亮,无论是从代码风格还是从重用性来说,都是相当出色的.之前阅读过Thinking in java,感觉很多东西都不能深入理解,太过于理论化,现在结合JDK看来,又别有一番感悟.以前每次有面试,都会从网上收集一些面试题,死记硬背一些知识,HashMap与HashTable的区别啊之类的,但是看了JDK

JDK源码学习系列07----Stack

                                                               JDK源码学习系列07----Stack 1.Stack源码非常简单 package java.util; public class Stack<E> extends Vector<E> { // 版本ID.这个用于版本升级控制,这里不须理会! private static final long serialVersionUID = 122446316454

myeclipse调试代码的时候看不到变量的值和jdk源码重新编译

Q:myeclipse调试代码的时候看不到变量的值? A: 调试的类的Class文件里没有包含LocalVariableTable属性表, 这是因为在编译时,编译者为了减少文件大小而不把属性表的信息放在Class文件中. 使用命令为javac -g>http://hllvm.group.iteye.com/group/topic/25798--解决方法:需要重新编译一份用于debug版的. Q:重新编译jdk源码,启用debug信息 >http://www.cnblogs.com/thecat