POJ 2208 Pyramids 欧拉四面体

给出边长,直接就可以求出体积咯

关于欧拉四面体公式的推导及证明过程

2010-08-16 14:18


1,建议x,y,z直角坐标系。设A、B、C少拿点的坐标分别为(a1,b1,c1),(a2,b2,c2),(a3,b3,c3),四面体O-ABC的六条棱长分别为l,m,n,p,q,r;

2,四面体的体积为,由于现在不知道向量怎么打出来,我就插张图片了,

将这个式子平方后得到:

3,根据矢量数量积的坐标表达式及数量积的定义得

又根据余弦定理得

4,将上述的式子带入(1),就得到了传说中的欧拉四面体公式

摘自:http://www.cnblogs.com/kuangbin/archive/2012/04/13/2446378.html

代码:

//#pragma comment(linker, "/STACK:16777216") //for c++ Compiler
#include <stdio.h>
#include <iostream>
#include <cstring>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <algorithm>
#define ll long long
#define Max(a,b) (((a) > (b)) ? (a) : (b))
#define Min(a,b) (((a) < (b)) ? (a) : (b))
#define Abs(x) (((x) > 0) ? (x) : (-(x)))

using namespace std;

double P( double a,double b,double c,double d,double e ){
    return a*(b*c-d*e);
}

double EulerTetrahedron(double OA, double OB, double OC, double AB, double BC, double CA){
    OA *= OA;    OB *= OB;   OC *= OC;
    AB *= AB;    CA *= CA;   BC *= BC;
    double ans = 0;
    ans += P( OA,OB,OC,(OB+OC-BC)/2.,(OB+OC-BC)/2. );
    ans -= P( (OA+OB-AB)/2.,(OA+OB-AB)/2.,OC,(OA+OC-CA)/2.,(OB+OC-BC)/2. );
    ans += P( (OA+OC-CA)/2.,(OA+OB-AB)/2.,(OB+OC-BC)/2.,OB,(OA+OC-CA)/2.);
    return sqrt(ans/36);
}
int main(){
    double OA,OB,OC,AB,BC,CA;
    while( scanf("%lf%lf%lf%lf%lf%lf",&OA,&OB,&OC,&AB,&CA,&BC)!=EOF ){
        printf("%.4f\n",euler(OA, OB, OC, AB, BC, CA));
    }
    return 0;
}

POJ 2208 Pyramids 欧拉四面体,布布扣,bubuko.com

时间: 08-18

POJ 2208 Pyramids 欧拉四面体的相关文章

POJ 2208 已知空间四面体六条边长度,求体积

Pyramids Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2718   Accepted: 886   Special Judge Description Recently in Farland, a country in Asia, a famous scientist Mr. Log Archeo has discovered ancient pyramids. But unlike those in Egyp

[POJ 2407]Relatives(欧拉函数)

Description Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz. Input There are several

POJ 2407 Relatives 欧拉函数题解

最基本的欧拉函数: 欧拉函数:求小于n的与n互质的个数 欧兰函数公式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)-..(1-1/pn),其中p1, p2--pn为x的所有质因数 就是要求这样的式子啦,不过求这条式子,相信有很多种方法可以求,这个不是难题: 不过问题是如何巧妙地求,如何简洁地写出代码. 直接硬求,或者求出质因数之后求都不是巧妙的方法了,参考了下别人的代码才知道可以写的这么巧妙的. 下面程序可以说是连消带打地求式子结果,分解质因子,可以如此简明地把解

poj 2154 Color 欧拉函数优化的ploya计数

枚举位移肯定超时,对于一个位移i,我们需要的是它的循环个数,也就是gcd(i,n),gcd(i,n)个数肯定不会很多,因为等价于n的约数的个数. 所以我们枚举n的约数,对于一个约数k,也就是循环个数为n/k这样的个数有phi[k]种,证明网上有很多.所以答案就是 phi[k]*(pow(n,n/k)) (k是n的所有约数) 由于约数会很大所以不能打表,只能单个算. 再由于最后要除以n,如果做除法就不能直接取模,所以我们在算每一次pow(n,n/k)的时候,都少乘一个n,这样就相当于除法了. #i

Dirichlet&#39;s Theorem on Arithmetic Progressions POJ - 3006 线性欧拉筛

题意 给出a d n    给出数列 a,a+d,a+2d,a+3d......a+kd 问第n个数是几 保证答案不溢出 直接线性筛模拟即可 1 #include<cstdio> 2 #include<cstring> 3 using namespace std; 4 bool Is_Primes[1000005]; 5 int Primes[1000005]; 6 int A[1000005]; 7 int cnt; 8 void Prime(int n){ 9 cnt=0; 1

Goldbach&#39;s Conjecture POJ - 2262 线性欧拉筛水题 哥德巴赫猜想

题意 哥德巴赫猜想:任一大于2的数都可以分为两个质数之和 给一个n 分成两个质数之和 线行筛打表即可 可以拿一个数组当桶标记一下a[i]  i这个数是不是素数  在线性筛后面加个装桶循环即可 #include<cstdio> #include<cstring> using namespace std; bool Is_Primes[1000005]; int Primes[1000005]; int cnt; void Prime(int n){ cnt=0; memset(Is_

POJ 2480 (约数+欧拉函数)

题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n不互质,那么只要枚举n的全部约数,对于一个约数d,必有gcd(i/d,n/d)互质,这部分的gcd和=d*欧拉函数phi(n/d). 不断累加暴力求解即可. 其实还可以公式化简,不过实在太繁琐了.可以参考金海峰神的解释. 由于要求好多欧拉函数,每次都分解质因数法必然TLE,这里所以采用O(√n)求单

POJ 1284-Primitive Roots(欧拉函数求原根)

Primitive Roots Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1284 Appoint description:  System Crawler  (2015-04-06) Description We say that integer x, 0 < x < p, is a primitive root mod

poj 1386 有向图欧拉(回)路

判断是否存在欧拉(回)路,注意先要用并查集判断图是否连通. 1 #include <iostream> 2 #include <cstring> 3 #include <cstdio> 4 using namespace std; 5 6 const int N = 26; 7 const int M = 1001; 8 int f[N]; 9 int degree[N]; 10 bool visit[N]; 11 char word[M]; 12 13 int fin